Teacher's Manual

Support Coach

8 TARGET

Foundational

 Mathematics
Dear Educator,

We are pleased to provide for you the new edition of Support Coach. This program has been built to meet the new, higher standards for Mathematics and contains the rigor that your students will need. We believe you will find it to be an excellent resource for targeted instruction, practice, and assessment.

The Triumph Learning Team

Support Coach, Target: Foundational Mathematics, First Edition, Teacher's Manual, Grade 8
550NATE ISBN-13: 978-1-62928-530-6
Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016
© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher Printed in the United States of America. 10987654321

Contents

Student Edition Contents vi
Instructional Overview viii
Student Edition Overview viii
Teacher's Manual: An Annotated Guide xi
Lesson 1 Irrational Numbers 2

- Understanding Rational Numbers- Understanding Irrational Numbers- Irrational Numbers
Lesson 2 Square Roots and Cube Roots 10
- Evaluating Square Numbers
- Evaluating Cube Numbers
- Square Roots and Cube Roots
Lesson 3 Scientific Notation 18
- Expressing Magnitude- Converting Between Scientific Notation and Standard Form
- Scientific Notation
Lesson 4 Comparing Proportional Relationships 26
- Unit Rate and Slope of a Line
- Graphing a Proportional Relationship
- Comparing Proportional Relationships
Lesson 5 Slope 34
- Finding the Slope of a Line- Writing the Equation of a Line- Slope
Lesson 6 Linear Equations with Rational Coefficients 42
- Interpreting Solutions of Equations
- Linear Equations with Whole-Number Coefficients
- Linear Equations with Rational Coefficients
Lesson 7 Linear Equations in Two Variables 50
- Solving Linear Systems Graphically
- Solving Linear Systems Algebraically
- Linear Equations in Two Variables
Lesson 8 Modeling Relationships with Functions 58
- Understanding Functions
- Graphing the Equation $y=m x+b$
- Modeling Relationships with Functions
Lesson 9 Comparing Functions 66
- Describing Functional Relationships from Graphs
- Sketching Graphs Using Verbal Descriptions
- Comparing Functions
Lesson 10 Translations on a Coordinate Grid 74
- Understanding Translations
-Translations and Congruence
- Translations on a Coordinate Grid
Lesson 11 Reflections on a Coordinate Grid 82
- Understanding Reflections- Reflections and Congruence-Reflections on a Coordinate Grid
Lesson 12 Rotations on a Coordinate Grid 90
- Understanding Rotations
- Rotations and Congruence- Rotations on a Coordinate Grid
Lesson 13 Dilations on a Coordinate Grid 98
- Enlarging a Figure Using Dilations
- Reducing a Figure Using Dilations
- Dilations on a Coordinate Grid
Lesson 14 Similarity 106
- Congruent Figures
- Similar Figures- Similarity
Lesson 15 Angles in Triangles 114
- Angle Pairs
- Angles Formed by a Transversal
- Angles in Triangles
Lesson 16 Using the Pythagorean Theorem on a Coordinate Grid 122
- Understanding the Pythagorean Theorem
- Using the Pythagorean Theorem
- Using the Pythagorean Theorem on a Coordinate Grid
Lesson 17 Solving Problems with Volume 130
- Evaluating Algebraic Expressions- Volume Formulas- Solving Problems with Volume
Lesson 18 Interpreting Scatter Plots 138
- Identifying Association in a Scatter Plot
- Constructing Scatter Plots
- Interpreting Scatter Plots
Lesson 19 Solving Problems with Scatter Plots 146
- Identifying a Trend Line
- Drawing a Trend Line
- Solving Problems with Scatter Plots
Lesson 20 Solving Problems with Linear Models 154
- Identifying the Slope and Intercept of a Line
- Writing Equations for Linear Models
- Solving Problems with Linear Models
White Paper: Instructional Strategies that Build Mathematical Proficiency 163
Appendix: Math Tools A
Appendix: Correlations Charts B

Student Edition Contents

Lesson 13 Dilations on a Coordinate Grid 124
Lesson 14 Similarity 134
Lesson 15 Angles in Triangles 144
Lesson 16 Using the Pythagorean Theorem on a Coordinate Grid 154
Lesson 17 Solving Problems with Volume 164
Lesson 18 Interpreting Scatter Plots 174
Lesson 19 Solving Problems with Scatter Plots 184
Lesson 20 Solving Problems with Linear Models 194
Glossary 204
Math Tools 211

Instructional Overview

This mathematics skills and concepts program provides scaffolded instruction and support for students struggling with grade-level content. Aimed at students requiring strategic intervention-specifically, those students missing a critical foundation for grade-level understandings-Support Coach reflects a careful analysis of the prerequisites of key gradelevel skills. This means that students will be able to rehearse and review prior skills that will ensure competency at a specific grade.

The program consists of three components:

- Student Edition Worktext
- Comprehensive Teacher's Manual with reduced, annotated Student Edition pages
- Assessment Booklet containing lesson quizzes, two performance tasks for each of the five domains, and two practice tests

Student Edition Overview

The Student Edition features 20 key lessons. While each lesson connects to prior foundational skills and concepts, it can be viewed as an independent unit of instruction. In this way, the 20 lessons allow teachers to differentiate instructions according to the requirements of each student.

Key to the philosophy behind Support Coach is the recognition that math skills and concepts are part of a progression that begins early in students' lives and continues beyond their current grade level with increased complexity and depth.
For students, achieving true understanding at any grade level means mastery of prior content that connects to this grade and mastery of content that connects within the grade. Often, students who cannot cope with a specific part of their grade's curriculum are missing one or more understandings that would allow mastery. Support Coach supplies the missing pieces.

Lesson Structure

Each lesson is divided into three parts: Plug In, Power Up, and Ready to Go. The first two parts provide students with a review and practice of the prerequisite content necessary for success. The Plug In component reacquaints students with skills and concepts that are foundational to performing at grade level. Power Up picks up from Plug In to add another layer of prerequisite content that ensures a smooth transition to Ready to Go. This section affords an opportunity for instruction. Each part highlights key vocabulary and supplies sufficient practice to ensure mastery before moving forward. Ready to Go, the on-grade-level portion of the lesson, ends with an important emphasis on problem solving.

PLUE IN	EOMERIP	
Foundational skill remediating specific content	Transitional skill connects Foundational skill to Target skill	Target skill on grade level

A Lesson Link is included to show both teachers and students how these skills connect!

LESSON LINK

PLUE IN

POWER UP

GO!

You can enlarge a figure by multiplying its side lengths by a scale factor greater than 1 .

Scale factor $=1.5$

$$
2 \times 1.5=3
$$

You can reduce a figure by multiplying its side lengths by a scale factor between 0 and 1.

I get it! I can dilate figures on the coordinate plane
by multiplying each of the coordinates by the scale factor.

Using Support in the Classroom

The broad outline of Support Coach's features suggests that the best way to use it in your classroom is to take advantage of its versatility. This means that even as Support Coach aims to help bring students to grade-level competency, there are many ways to implement it:

- Support Coach can be used with any other set of materials you are using for Mathematics.
- The lessons do not have to be taught in a particular sequence.
- You can use Support Coach with one or many students at any given time.
- Support Coach can be used in the classroom, at home, in after-school programs, and in summer programs.
- You can use several levels of Support Coach at any grade to assist students who have missed earlier skills.

The most important aspect of Support Coach is that it digs to uncover elements that are missing from the hierarchy of math skills and concepts and assists students who have forgotten or never mastered these elements. This applies to any student who struggles when encountering new content.

Teacher's Manual:
 An Annotated Guide

Support Coach Teacher's Manual provides all the instructional support you need to help your students achieve mastery of key grade-level skills.
Lessons in this Teacher's Manual include the following features:

- A Lesson Overview chart detailing objectives for each section, concepts and skills, and key vocabulary terms
- A list of required and suggested Materials
- Spotlight on Mathematical Practice notes that support teachers at point-of-use to develop strong mathematical behaviors in their students
- Spotlight on Mathematical Language provides a series of prompts using appropriate mathematical language and terms that are designed to elicit similar mathematical language from students
- English Language Learner notes included at point-of-use to prepare teachers for the diverse needs of the student population
- Common Error notes that provide insight into student misconceptions at point-of-use
- Robust Discussion Support that includes Prompts and Sentence Starters to facilitate mathematical discourse
- Observation-Action tables that outline how teachers can address specific student needs during independent practice
- A Lesson Link that outlines how each section of the lesson connects and works to bring the student to the on-level standard

Plug In Pages

The Lesson Overview chart saves preparation time.

A breakdown of the lesson's components helps you plan.

The Materials list details the required and suggested tools for each section.

Introduce and Model
outlines how to introduce a topic and model thinking and problem solving.

```
odel
and
and
``` -

-The Build Background section provides suggested activities to set up the lesson and assess student preparedness.

The Support Coach Avatars model exemplary student thinking, questioning, and problem solving!

Support is included for guiding students through the gradual release of modeling to independent practice. \(\qquad\)
nh
ing, for
through
se of
endent

The Observation-Action table offers suggestions for addressing certain behaviors students may exhibit during independent practice.

\section*{Power Up Pages}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{Each section of the lesson has specific objectives, concepts and skills, and key vocabulary. \(\qquad\)} & \multicolumn{4}{|l|}{POWER UP Understanding Irrational Numbers} \\
\hline & \(\square\) & \[
\begin{aligned}
& \text { - Write equivalent rational } \\
& \text { numbers with fewer or } \\
& \text { more digits. }
\end{aligned}
\] & & \\
\hline & & & & - \\
\hline & & & Use rational approximations of
irrational numbers to compare the
size of irrational numbers, ... and
estimate the value of expressions
\(\left(\right.\) e.g., \(\pi^{2}\)). & \\
\hline \multirow[t]{3}{*}{Support for English Language Learners is embedded throughout instruction. \(\qquad\)} & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Build Background \\
- Talk to students about the uses of irrational numbers in everyday life. For example, an engineer is building a circular water fountain. If the diameter
is to be 20 ft , what will be the circumference of the fountain? Explain that in order to find the circumference, you need to multiply the diameter by \\
\(\pi\), an irrational number \\
- Have students discuss additional examples of real situations that involve \\
irrational numbers \\
- Tell students they will classify real numbers by their decimal form. \\
Introduce and Model \\
- Introduce Concepts and Vocabulary Emphasize that together, the rational and irrational numbers make up the set of real numbers. Have
students explain the difference between rational numbers and irrationa numbers.
\end{tabular}} \\
\hline & & & & \\
\hline & 4 Lesson) & & & onatimembum ue \\
\hline
\end{tabular}

\section*{Ready to Go Pages}

\section*{Ready to Go Pages}

Suggestions for Additional Practice are provided for each lesson. \(\qquad\)

Full support is provided for modeling the Four-Step Method for problem solving in the context of each lesson.

\section*{A three-part}

Observation-Action
table can be used to determine whether students need more time with the lesson content or can move on to the Lesson Quiz. \(\qquad\)

The Ready to Go part of each lesson includes a robust section of Independent Practice.

To help Support Independent Practice, teachers are supplied with suggestions for helping students who are struggling with specific items.

\section*{Assessments}

The Assessment Booklet contains lesson quizzes, two performance tasks for each of the five domains, and two practice tests.
Each Lesson Quiz helps you evaluate students' understanding of the skills taught in the lesson and determine whether they are prepared to move on to new material.

There are ten Performance Tasks in the Assessment Booklet. The two Performance Tasks have a task-specific rubric. The first of the two tasks is a bit easier than the second-which allows teachers to differentiate instruction on performance task practice.

Practice Test 1 can be administered before students begin the lessons in the Student Edition. The results allow you to establish a baseline measure of students' mathematics proficiency before starting the Student Edition lessons. You can then use Practice Test 2 to measure students' progress after completing the program.
The answer keys for the Lesson Quizzes, Performance Tasks, and Practice Tests identify the correct answers.

\section*{Irrational Numbers}

\section*{PLUE IN Understanding Rational Numbers}

\section*{MATERIALS}
- Place-Value Chart (suggested)

\section*{ENGLISH LANGUAGE LEARNERS}

ELL students may have difficulty with the term terminating decimal. Have students identify the root word, terminate, in the term and determine a definition for the word. Reiterate that a terminating decimal can be written with a limited number of decimal places.

\section*{Build Background}
- Talk to students about the purpose of rational numbers in real life. For example, your father will loan you \(\$ 100\) if you pay him \(1.25 \%\) interest each day. If you pay him back in 3 days, how much interest will you have to pay him? Explain that multiplying the total amount by the percent, written as a terminating decimal, will give you the amount owed for 1 day.
- Have students discuss additional examples of real situations that involve rational numbers and terminating decimals.
- Tell students they will write equivalent forms of rational numbers.

\section*{Introduce and Model}
- Introduce Concepts and Vocabulary Emphasize that a bar over a number or group of numbers means that those numbers repeat forever. Have students work with a partner to come up with a few examples of rational numbers, both terminating and repeating.
- Support Discussion Have partners discuss briefly before group discussion. Ask students to identify what the bar over \(0 . \overline{24}\) means.

Prompt: Why would you want to add zeros to the right of the last decimal place of a terminating decimal?
Sentence Starter: Rational numbers can be compared by...

\section*{- Model Application}

DO A Guide students through writing each number as a decimal with five decimal places. Monitor that students do not change the value of any numbers.
Do B Explain that the bar placed over certain digits means that those digits repeat. Have students circle the digit(s) that repeat before writing each number to six decimal places.
DO C Have students use the Words to Know to determine which numbers are terminating decimals and which numbers are repeating decimals. Help students identify which set of digits are repeating for the repeating decimals.

\section*{Practice and Assess}
- Ask students to complete the practice items 1-6 on page 5 independently or in pairs. Monitor ongoing work.
- Observe whether students are correctly writing equivalent numbers. Use the chart below as needed to address any difficulties.
\begin{tabular}{|l|l|}
\hline Observation & Action \\
\hline \begin{tabular}{l}
Students have \\
difficulty writing \\
equivalent rational \\
numbers.
\end{tabular} & \begin{tabular}{l}
Remind students that adding or removing zeros at \\
the end of a terminating decimal does not change \\
the value of the number.
\end{tabular} \\
\begin{tabular}{l}
Have students circle the digit(s) that repeat. \\
Remind them that placing a bar over the first set of \\
repeating decimals is the mathematical convention \\
for representing repeating digits.
\end{tabular} \\
\hline
\end{tabular}

\section*{COMMON ERRORS}

Students may have difficulty remembering to place the bar over repeating decimals. Ask student whether the number they wrote is a terminating or repeating decimal. Then ask what symbol is used when numbers repeat.

SPOTLIGHT ON
MATHEMATICAL PRACTICES

\section*{Construct viable arguments}

Help students explain their reasoning by asking probing questions: How can you use a place-value chart to compare these numbers?

\section*{POWER UP Understanding Irrational Numbers}
\begin{tabular}{|c|c|c|c|c|}
\hline & & OBJECTIVES & CONCEPTS AND SKILLS & VOCABULARY \\
\hline \multirow[b]{2}{*}{} & \begin{tabular}{l}
PLUG IN \\
Understanding Rational Numbers
\end{tabular} & - Write equivalent rational numbers with fewer or more digits. & Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in Os or eventually repeat. & \begin{tabular}{l}
- rational number \\
- terminating decimal \\
- repeating decimal
\end{tabular} \\
\hline & \begin{tabular}{l}
POWER UP \\
Understanding Irrational Numbers Student Edition pp. 6-7
\end{tabular} & - Classify real numbers by their decimal form. & Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate or eventually repeat. Know that other numbers are called irrational. & \begin{tabular}{l}
- irrational number \\
- square root \\
- real number
\end{tabular} \\
\hline & \begin{tabular}{l}
READY TO EO \\
Irrational Numbers
\end{tabular} & - Plot irrational numbers on the number line by estimating their location. & Use rational approximations of irrational numbers to compare the size of irrational numbers, . . . and estimate the value of expressions (e.g., \(\pi^{2}\)). & \\
\hline
\end{tabular}

\section*{ENGLISH LANGUAGE LEARNERS}

ELL students may have difficulty differentiating between a square and a square root. Provide sentence stems, such as "A square is..." and "A square root is..." for students to write the definition in their own words.

\section*{Build Background}
- Talk to students about the uses of irrational numbers in everyday life. For example, an engineer is building a circular water fountain. If the diameter is to be 20 ft , what will be the circumference of the fountain? Explain that in order to find the circumference, you need to multiply the diameter by \(\pi\), an irrational number.
- Have students discuss additional examples of real situations that involve irrational numbers.
- Tell students they will classify real numbers by their decimal form.

\section*{Introduce and Model}
- Introduce Concepts and Vocabulary Emphasize that together, the rational and irrational numbers make up the set of real numbers. Have students explain the difference between rational numbers and irrational numbers.
- Support Discussion Have partners discuss briefly before group discussion. Students should begin by discussing what makes a number either rational or irrational. Students may try to think of examples of possibilities, but should realize quickly that a number is classified as either being rational or irrational, and that an overlap does not exist.

Prompt: How can you determine whether a number is rational or irrational?
Sentence Starter: A rational number is An irrational number is ...

\section*{- Model Application}

DO A Guide students through classifying numbers as rational or irrational. Ask: Does the decimal form terminate? Are there any repeating digits?

DO B Help students work with square roots and work toward identifying square roots as rational or irrational. Remind students of the definition of a perfect square. It might be helpful to make a list of the first ten perfect squares as examples for students.
- Support Discussion Have partners discuss briefly before group discussion. Tell students that they can use calculators to compare \(\frac{22}{7}\) and \(\pi\).

Prompt: What symbol did Joe use that makes his number sentence incorrect?
Sentence Starter: 22 and 7 are both integers, so \(\frac{22}{7}\) is ...

\section*{Practice and Assess}
- Ask students to complete practice items 1-8 on page 7 independently or in pairs. Monitor ongoing work.
- Observe whether students accurately identified rational and irrational numbers. Use the chart below as needed to address any difficulties.
\begin{tabular}{|l|l|}
\hline Observation & Action \\
\hline \begin{tabular}{l}
Students identify \\
any nonterminating \\
decimal as irrational.
\end{tabular} & \begin{tabular}{l}
Ask students to convert \(\frac{1}{9}\) to a decimal. Ask: Is the \\
fraction rational or irrational? Does the decimal \\
terminate?
\end{tabular} \\
\hline
\end{tabular}

SPOTLIGHT ON
MATHEMATICAL PRACTICES

\section*{Critiquing Others'} Reasoning
Help students think about Joe's equation \(\pi=\frac{22}{7}\) by asking probing questions: Is \(\pi\) rational or irrational? How do you know? Is \(\frac{22}{7}\) rational or irrational? How do you know? Is it possible for a number to be both rational and irrational?

\section*{READY TO EO Irrational Numbers}
\begin{tabular}{|c|c|c|c|c|}
\hline & & OBJECTIVES & CONCEPTS AND SKILLS & VOCABULARY \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 1 \\
& \frac{0}{2} \\
& \frac{1}{2} \\
& 02 \\
& \frac{1}{1} \\
& \frac{1}{2} \\
& 20 \\
& 0 \\
& \hline 10
\end{aligned}
\]} & \begin{tabular}{l}
PLUG IN \\
Understanding Rational Numbers
\end{tabular} & - Write equivalent rational numbers with fewer or more digits. & Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in Os or eventually repeat. & \begin{tabular}{l}
- rational number \\
- terminating decimal \\
- repeating decimal
\end{tabular} \\
\hline & \begin{tabular}{l}
POWER UP \\
Understanding Irrational Numbers
\end{tabular} & - Classify real numbers by their decimal form. & Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in Os or eventually repeat. Know that other numbers are called irrational. & \begin{tabular}{l}
- irrational number \\
- square root \\
- real number
\end{tabular} \\
\hline & \begin{tabular}{l}
READY TO EO \\
Irrational Numbers \\
Student Edition pp. 8-13
\end{tabular} & - Plot irrational numbers on the number line by estimating their location. & Use rational approximations of irrational numbers to compare the size of irrational numbers, . . . and estimate the value of expressions (e.g., \(\pi^{2}\)). & \\
\hline
\end{tabular}

\section*{MATERIALS}
- Lesson 1 Quiz, Assessment Manual pp. 4-5
- Lesson 1 Quiz Answer Key, Assessment Manual
- Index cards (suggested)

\section*{ENGLISH LANGUAGE LEARNERS}

ELL students may need additional support for understanding the term approximate. Have the class make a list of synonyms for approximate, such as estimate, about, close to, near. Ask ELL students to use the term approximate in a sentence, such as "I am approximately 5 feet tall."

\section*{Build Background}
- Talk to students about reasons to approximate irrational numbers in real life. For example, you are building a shadow box that is shaped like a right triangle. Each of the two legs are 1 ft long and the hypotenuse is \(\sqrt{2} \mathrm{ft}\) long. You want to know how long this is in feet and inches. Explain that estimating \(\sqrt{2}\) is one way to answer the question.
- Have students discuss additional examples of real situations that involve using a number line.
- Tell students they will approximate irrational numbers with rational numbers.

\section*{Introduce and Model}
- Introduce Concepts Guide students through the steps to plotting irrational numbers on the number line. Emphasize that these are only approximations, but they must be relatively close to their actual position on the number line.
- Support Discussion Have partners discuss briefly before group discussion. Students should relate that irrational numbers are non-terminating, non-repeating decimals, which would be impossible to graph on a number line.

Prompt: How do you graph an irrational number on a number line?
Sentence Starter: I can approximate irrational numbers by...

\section*{LESSON LINK}

Connect to Foundational Understanding Skills learned in the Plug In and Power Up are referenced in the Lesson Link. Explain that the set of real numbers can be broken down into rational and irrational numbers, which can be classified by their decimal form and plotted on a number line using estimation.
- Work Together Explain that students will use rational numbers to approximate an irrational number. Begin by working together with students to approximate \(\sqrt{11}\). If needed, allow students to use a calculator to square decimal numbers.
DO 4 Monitor students as they approximate \(\sqrt{8}\) to the nearest hundredth. Watch for students who do not follow the outlined steps, and reinforce the importance of accuracy in these excercises.
DO B For the first time in this lesson, students compare two irrational numbers. Students should recognize that since \(11>8\), that \(\sqrt{11}>\sqrt{8}\).
- Support Discussion Have partners discuss briefly before group discussion. As needed, suggest that partners share their ideas with other groups of students and explain their reasoning.

Prompt: You can substitute numbers for the variables to verify the statement is true.
Sentence Starter: Greg can square each irrational number to ...

\section*{COMMON ERRORS}

Students may not know where to begin when estimating \(\sqrt{11}\) to the nearest tenth. Have students write each decimal place (to the tenths) between 3 and 4 , such as 3.1, 3.2, 3.3, etc. Ask students to square each decimal. A similar process can be used for estimating to the nearest thousandths.

\section*{SPOTLIGHT ON}

MATHEMATICAL LANGUAGE
Support students in using mathematical language as they work:
- \(\sqrt{8}\) is between rational numbers 4 and 9 .
- What rational number to the nearest hundredths is closest to \(\sqrt{8}\) ?

\section*{ADDITIONAL PRACTICE}

Provide students with additional practice to model and solve:
Approximate each irrational number to the nearest hundredths.
\(\sqrt{10}\)
\(\sqrt{13}\)
\(\sqrt{27}\)
\(\sqrt{19}\)

\section*{Support Independent Practice}

1-4) Remind students to read the HINT and REMEMBER. If needed, ask: Did you remember to approximate to the nearest integer, then to the tenths, and then to the hundredths?

5-8 Always estimate the irrational number first, and then perform any operations with the rational number.
9-10 Can you compare the expressions before approximating their values?

Support Discussion Have partners compare the rational parts of the expressions, and then compare the irrational parts.

Prompt: How do the irrational parts of the expressions compare?
Sentence Starter: The multipliers in this problem are . . .

\section*{Problem Solving}
- Model the Four-Step Method Guide students through the four-step method using think-aloud strategies. Point out that the problem is asking if Max's truck can hold the board that is \(2 \sqrt{15} \mathrm{ft}\) long.
Think Aloud The question is asking if Max's truck can hold a board that is \(2 \sqrt{75} \mathrm{ft}\) long. I need to find an approximate value for \(2 \sqrt{15}\) and then compare that value to 8 ft .
- Support Problem-Solving Practice Have students use the Checklist as they complete each step.

\section*{Prompt: Between which two integers is \(\sqrt{65}\) ?}

Prompt: Is \(\sqrt{107}\) greater than or less than 10? How do you know?
Prompt: Without doing any calculations, how can you tell which is greater, \(\sqrt{17}\) or \(\sqrt{15}\) ?
- Explore Student Thinking Invite students to explain their answers to their partners and encourage discussion about why each student believes they are correct.

\section*{Assess}
- Use the table below to observe whether students accurately approximate irrational numbers.
- When all students are ready, assign the Lesson 1 Quiz.
\begin{tabular}{|l|l|l|}
\hline Observation & Action \\
\begin{tabular}{l|l}
Errors in approximating values of irrational \\
numbers are frequent; general confusion \\
about irrational numbers
\end{tabular} & \begin{tabular}{l}
Remind students to start their estimation with integers. \\
Then to tenths, hundredths, thousands, etc.
\end{tabular} \\
\hline 2 Observation & Action \\
\begin{tabular}{ll}
Performs calculations correctly, but does \\
not approximate to the nearest decimal \\
place indicated.
\end{tabular} & Have students review the decimal place values. \\
\hline Observation & \begin{tabular}{l}
Calculates, compares, and reasons \\
completely and correctly.
\end{tabular} & Assign the Lesson 1 Quiz. \\
\hline
\end{tabular}```

