Support Coach:

8 TARGET

Foundational Mathematios

Support Coach, Target: Foundational Mathematics, First Edition, Grade 8
550NASE ISBN-13: 978-1-62928-524-5
Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016
© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without written permission from the publisher.
Printed in the United States of America. 10987654321

Contents

Lesson 1 Irrational Numbers 4
Lesson 2 Square Roots and Cube Roots 14
Lesson 3 Scientific Notation 24
Lesson 4 Comparing Proportional Relationships 34
Lesson 5 Slope 44
Lesson 6 Linear Equations with Rational Coefficients 54
Lesson 7 Linear Equations in Two Variables 64
Lesson 8 Modeling Relationships with Functions 74
Lesson 9 Comparing Functions 84
Lesson 10 Translations on a Coordinate Grid 94
Lesson 11 Reflections on a Coordinate Grid 104
Lesson 12 Rotations on a Coordinate Grid 114

Lesson 13 Dilations on a Coordinate Grid 124
Lesson 14 Similarity 134
Lesson 15 Angles in Triangles 144
Lesson 16 Using the Pythagorean Theorem on a Coordinate Grid. 154
Lesson 17 Solving Problems with Volume 164
Lesson 18 Interpreting Scatter Plots 174
Lesson 19 Solving Problems with Scatter Plots 184
Lesson 20 Solving Problems with Linear Models 194
Glossary 204
Math Tools 211

Irrational Numbers

PLUE IN Understanding Rational Numbers

A rational number can be written as a ratio of two integers.

Examples of rational numbers:

$$
\begin{gathered}
5 \text { or } \frac{5}{1}, \frac{2}{3}, \frac{-5}{8} \\
1 \frac{1}{12} \text { or } \frac{13}{12},-9 \text { or } \frac{-9}{1}
\end{gathered}
$$

Every rational number can be written as a decimal form that either terminates or repeats.
I see that an
integer or
mixed number
is a rational
number because
both can be
written as a
ratio with two
integers, too.

A terminating decimal can be written with a limited number of decimal places without changing its value.

Examples:

rational number

a number that can be written as the ratio of two integers

terminating decimal

a decimal that has a limited number of decimal places

A repeating decimal cannot be written with a limited number of decimal places without changing its value. Repeating decimals have a digit or a series of digits that repeat.

Examples:
$3 . \overline{6}$ means 6 repeats forever.
$-2 . \overline{53}$ means 53 repeats forever.
$0.1 \overline{7}$ means 7 repeats forever.

I get it! I can write a repeating decimal by placing a bar over the digit or digits that repeat.

$$
\begin{aligned}
& 12=12.0=12.00=12.000 \\
& 4 \frac{1}{10}=4.1=4.10=4.100 \\
& -6=-6.0=-6.00=-6.000 \\
& \frac{-9}{10}=-0.9=-0.90=-0.900
\end{aligned}
$$

repeating decimal

a decimal that has a digit that repeats or a series of digits that repeat

What is the difference between 0.24 and $0 . \overline{24}$? Which is greater? How do you know?

A Write zeros in a terminating decimal without changing its value.
DO Write each number with five decimal places: $4, \frac{1}{2}, \frac{3}{8}$
(1) Write each number as a decimal.

$$
4=\quad \frac{1}{2}=
$$

\qquad $\frac{3}{8}=$ \qquad
(2) Write zeros to the right of the last
4. \qquad 0.5 \qquad 0.375

Represent each as a repeating decimal to six decimal places: $-1 . \overline{712}, \frac{2}{3}, 0 . \overline{68}$.
(1) Write each number as a decimal.
$-1.712=$ \qquad
I get it! In a repeating decimal, repeating digits can be shown to repeat any number of times. The value of the decimal is the same.
(2) Continue the repeating digits to the sixth decimal place. Put a bar over the last repeating digit(s).

$$
\begin{aligned}
&-1 . \overline{712}= \\
& 0 . \overline{6}= \\
& 0 . \overline{68}= \\
&
\end{aligned}
$$

You can write some rational numbers equivalently with fewer digits.
Write each rational number with the fewest digits possible: $6.2222 \overline{2},-0.10300$, $1.13535 \overline{35}, 0.736888 \overline{8}, 7.500,0.00010$.
(1) Identify each number as a repeating or terminating decimal.
2 Rewrite the repeating decimals so that the digit or digits that repeat appear only once below a bar.
\qquad
Repeating: \qquad
$6.2222 \overline{2}=$ \qquad
(3) Rewrite the terminating decimals so the last non-zero digit to the right is the final digit.

$$
1.13535 \overline{55}=
$$

$0.736888 \overline{8}=$ \qquad

$$
-0.10300=
$$

$$
7.500=
$$

$$
0.00010=
$$

\qquad

Tevin says $0.15 \overline{5}$ is the same as $0 . \overline{15}$. Do you agree? Explain.

PRACTICE

Write the numbers with 8 digits to the right of the decimal point.
\qquad
(1) 14

2
2.793 \qquad
(3) $0 . \overline{57}$ \qquad (4) $1.74 \overline{596}$ \qquad

Write the numbers with as few digits as possible.

5722.000000000 \qquad (6) $1.55555555 \overline{5}$
(8) $0.41276276276 \overline{276}$

POWER UP Understanding Irrational Numbers

Some numbers have decimal expansions that neither repeat nor terminate. They are called irrational numbers.
6.931558...
0.4198174...

I see! The three dots mean the number continues forever, but there is no pattern in the order of the digits shown.
π is one example of an irrational number.

$$
\pi=3.14159 \ldots
$$

Some square roots are irrational numbers.

irrational number
a number whose decimal form does not repeat or terminate
48.395620475...

square root

one of two equal factors of a number whose square is equal to that number
$4 \times 4=16$, so 4 is the square root of 16 .
$\sqrt{5} \times \sqrt{5}=5$, so $\sqrt{5}$ is the square root of 5

Together, rational and irrational numbers form the set of real numbers.

$$
\begin{aligned}
\frac{4}{9} & =0 . \overline{4} \\
\sqrt{10} & =3.162 \ldots \\
-7 & =-7.0
\end{aligned}
$$

I get it! Positive and negative numbers can be rational or irrational, and 0 is rational.

real number

a rational number or an irrational number
7.28
53.535982...
$0 . \overline{3}$
0

Are there any real numbers that are neither rational nor irrational? Are there any real numbers that are both rational and irrational?

A You can classify real numbers by their decimal form.
DO State whether the numbers are rational or irrational: $7,-\frac{2}{9}, 0.12627 \ldots, 1 \frac{1}{4}$
(1) Write each fraction or mixed number as a decimal.

2 Determine whether the number has a decimal form that terminates, repeats, or does neither.

3 State whether each number is rational or irrational.

\qquad

\qquad
7 is $-\frac{2}{9}$ is \qquad
$0.12627 \ldots$ is \qquad $1 \frac{1}{4}$ is \qquad

1 Irrational Numbers

B You can classify real numbers by their decimal form.
DO
State whether the numbers are rational or irrational: $\sqrt{21}, \sqrt{4}, \sqrt{\pi}$, $\sqrt{15}, \sqrt{36}, \sqrt{1}$. Write rational numbers in simplest form.

A perfect square is any integer times itself. So the square root of a perfect square is rational.
(1) Determine if each number is square root of a perfect square.
2) State whether each number is rational or irrational.
(3) Write each rational number in simplest form.

Square root of a perfect square: \qquad

Not the square root of a perfect square: \qquad
\qquad
Rational: \qquad
Irrational: \qquad - \qquad

$$
\begin{aligned}
& \sqrt{4}= \\
& \sqrt{36}= \\
& \sqrt{1}=
\end{aligned}
$$

SCU_{8}
Joe learns that people sometimes use $\frac{22}{7}$ for π. He writes $\pi=\frac{22}{7}$. Use what you know about rational and irrational numbers to explain why Joe is incorrect.

PRACTICE

State whether each number is rational or irrational. Write each rational number as a decimal in simplest form.
1
$17.34 \overline{05}$
(2) $\frac{3}{4}$
(4) $\sqrt{25}$
\qquad
6π
π
\qquad
(8) $3 \frac{1}{6}$

READY TO EO Irrational Numbers

Use a rational approximation to the nearest hundredth to plot $\sqrt{5}$ on the number line.
(1) Approximate $\sqrt{5}$ to the nearest integer. Since 5 is between 4 and $9, \sqrt{5}$ is between 2 and 3 . Because 5 is closer to 4 than to $9, \sqrt{5}$ is closer to 2 .

2. Approximate $\sqrt{5}$ to the nearest tenth.

Since 5 is between 4.84 and $5.29, \sqrt{5}$ is between 2.2 and 2.3.
Because 5 is closer to 4.84 than to $5.29, \sqrt{5}$ is closer to 2.2 .

(3) Approximate $\sqrt{5}$ to the nearest hundredth.

Since 5 is between 4.9729 and $5.0176, \sqrt{5}$ is between 2.23 and 2.24
Because 5 is closer to 5.0176 than to $4.9729, \sqrt{5}$ is closer to 2.24 .

$\sqrt{5} \approx 2.24$ to the nearest hundredth.

Why does the location of an irrational number on a number line need to be approximated?

LESSON LINK

PLUE IN

Rational numbers can be expressed as decimals that terminate or repeat.

Irrational numbers cannot be expressed as decimals that repeat or terminate.

I see! I can approximate irrational numbers using rational numbers.

WORK TOGETHER

Approximate $\sqrt{11}$ to the nearest hundredth without a number line.

- Find the integers whose squares are just above and just below 11.
- Find the tenths whose squares are just above and just below 11.
- Find the hundredths whose squares are just above and just below 11.
To the nearest hundredth, $\sqrt{11} \approx 3.32$.
$3^{2}=9$ and $4^{2}=16$
11 is closer to 9 than to 16 , so $\sqrt{11}$ is closer to 3 than to 4 .
$3.3^{2}=10.89$ and $3.4^{2}=11.56$
11 is closer to 10.89 than to 11.56 , so $\sqrt{11}$ is closer to 3.3 than to 3.4.
$3.31^{2}=10.9561$ and $3.32^{2}=11.0224$
11 is closer to 11.0224 than to 10.9561 , so $\sqrt{11}$ is closer to 3.32 than to 3.31 .

I see! I compare the
squares of rational numbers to the square of the irrational number I'm trying to approximate.

A You can use squares to approximate decimal places of a square root.
DO
Approximate $\sqrt{8}$ to the nearest hundredth.
(1) Find the integers whose squares are on either side of 8 .
2) Find the tenths whose squares are on either side of 8 .

3 Find the hundredths whose squares are on either side of 8 .
$2^{2}=$ \qquad and $3^{2}=$ \qquad

8 is closer to \qquad than to \qquad so $\sqrt{8}$ is close to \qquad _.
$2.8^{2}=$ \qquad and $2.9^{2}=$ \qquad
8 is closer to \qquad so $\sqrt{8}$ is close to \qquad
$2.82^{2}=$ \qquad and $2.83^{2}=$ \qquad
8 is closer to \qquad , so $\sqrt{8}$ is close to \qquad
To the nearest hundredth, $\sqrt{8} \approx$ \qquad

B You can use approximations to compare irrational numbers.
Which is greater, $5 \sqrt{11}$ or $6 \sqrt{8}$? Use the previous calculations.
(1) Find the approximation of the irrational factor.

$$
\begin{array}{ll}
\sqrt{11} \approx 3.32 & \sqrt{8} \approx \\
5 \sqrt{11} \approx \\
6 \sqrt{8} \approx & \times
\end{array}
$$

\qquad \times \qquad $=$ \qquad
(2) Multiply each approximation by the rational factors.
(3) Compare the approximations. \times \qquad $=$ is greater than \qquad
so \qquad is greater than \qquad

How can Greg use the following true statement to compare irrational numbers greater than 1? "If x and y are each greater than 1 and the square of x is greater than the square of y, then x is greater than y."

PRACTICE

Approximate each irrational number to the nearest hundredth.
(1) $\sqrt{2}$
(2) $\sqrt{6}$

REMEMBER
Approximate to the nearest integer,
then to the nearest tenth, and then to the nearest hundredth.
(3) $\sqrt{12}$

(4) $\sqrt{20}$

HINT
You can check your answer by multiplying it by itself.

Approximate the following to the nearest hundredth. Use your answers to problem 1 and $\pi \approx 3.14$ to approximate each irrational factor.
5. $2 \sqrt{2}$
(6) 3π
(7) $\frac{\pi}{2}$
$8 \pi \sqrt{2}$

Approximate each product to the nearest thousandth. Then state which value is greater.
9. $3 \sqrt{7}$ and $5 \sqrt{2}$

$$
3 \sqrt{7} \approx
$$

\qquad is
$5 \sqrt{2} \approx$ \qquad
greater than \qquad .
$105 \sqrt{6}$ and $6 \sqrt{5}$ \qquad $5 \sqrt{6} \approx$ \qquad
\qquad is
$6 \sqrt{5} \approx$ \qquad
greater than \qquad .

See the Pattern.

Adrian says he knows which of the two values below is greater without doing any calculations. What is Adrian's strategy?
$9 \sqrt{11}$ and $9 \sqrt{10}$

READY TO GO

PROBLEM SDLVING

PAINTING A CIRCLE

READ Max needs to bring wooden boards to a construction site. His truck can hold a board that is up to 8 ft long. Will his truck hold a board that is $2 \sqrt{15} \mathrm{ft}$ long? Find the length of the board to the nearest thousandth.
-What are you asked to find? \qquad

- What do you need to know? \qquad
- How do you solve the problem?
(1) Find the integers whose squares are \qquad ${ }^{2}=9$ and \qquad ${ }^{2}=16$ just above and just below 15 .Find the tenths whose squares are just above and just below 15 .Find the hundredths whose squares $\sqrt{15}$ is closer to \qquad .
$3.8^{2}=$ \qquad $3.9^{2}=$ \qquad
$\sqrt{15}$ is closer to \qquad —.
$3.87^{2}=$ \qquad $3.88^{2}=$ \qquad are just above and just below 15 .

Find the thousandths whose squares are just above and just below 15 .
$\sqrt{15}$ is closer to \qquad .
$3.872^{2}=$ \qquad
$3.873^{2}=$ \qquad
$\sqrt{15}$ is closer to \qquad
$2 \times$ \qquad $=$ \qquad ft approximation and 2.

Divide the product by 2 . Then square the quotient. The solution should be very close to 15 .

I can work backward to check my answer. That can show me if I've made a mistake in my calculations.
\qquad
\qquad ${ }^{2}=$ \qquad
So, $2 \sqrt{15}=$ \qquad .

The length of the board to the nearest thousandth is \qquad ft .
The board \qquad inside the bed of the Max's truck.

PRACTICE

Use the problem-solving steps to help you.

1 Two legs of a right triangle measure 4 cm and 7 cm . The length of its hypotenuse is $\sqrt{65}$. Approximate the length of the hypotenuse to the nearest thousandth.
\square READ
PLAN
SOLVE
CHECK

The area of the square floor measures $107 \mathrm{ft}^{2}$. Find the approximate length of each side of the floor by approximating $\sqrt{107}$ to the nearest thousandth.

CHECKLIST

READPLAN
SOLVE
CHECK

3 Gary wants to rent space at the community garden. He can choose one space with an area of $16 \sqrt{17} \mathrm{ft}^{2}$ and another space with an area of $17 \sqrt{15} \mathrm{ft}^{2}$. If Gary wants to rent the larger plot, which should he choose? Explain.

CHECKLIST

READPLAN SOLVE CHECK

