

Foundational

Mathematics

۲

Support Coach, Target: Foundational Mathematics, First Edition, Grade 8 550NASE ISBN-13: 978-1-62928-524-5

Triumph Learning® 136 Madison Avenue, 7th Floor, New York, NY 10016

© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher.

TARGET

Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1

۲

Contents

Lesson 1	Irrational Numbers
Lesson 2	Square Roots and Cube Roots 14
Lesson 3	Scientific Notation
Lesson 4	Comparing Proportional Relationships 34
Lesson 5	Slope 44
Lesson 6	Linear Equations with Rational Coefficients 54
Lesson 7	Linear Equations in Two Variables
Lesson 8	Modeling Relationships with Functions 74
Lesson 9	Comparing Functions 84
Lesson 10	Translations on a Coordinate Grid
Lesson 11	Reflections on a Coordinate Grid 104
Lesson 12	Rotations on a Coordinate Grid114

۲

۲

۲

Lesson 13	Dilations on a Coordinate Grid 124
Lesson 14	Similarity 134
Lesson 15	Angles in Triangles 144
Lesson 16	Using the Pythagorean Theorem on a Coordinate Grid
Lesson 17	Solving Problems with Volume
Lesson 18	Interpreting Scatter Plots 174
Lesson 19	Solving Problems with Scatter Plots
Lesson 20	Solving Problems with Linear Models 194
Glossary	
Math Tools	

PLUG IN Understanding Rational Numbers

۲

4 LESSON 1

()

Duplicating any part of this book is prohibited by law. © 2014 Triumph Learning, LLC

۲

You can express a repeating decimal in dir Represent each as a repeating de to six decimal places: $-1.\overline{712}, \frac{2}{3},$	fferent ways. ecimal 0.68.	l get it! In a repeating decimal, repeating digits can be shown to repeat any number of times. The value of the decimal is the same.	
1 Write each number as a decimal.	-1.712 =	$\frac{2}{3} = $ 0. $\overline{68} = $	_
2 Continue the repeating digits to the sixth decimal place. Put a bar over the last repeating digit(s).	$-1.\overline{712} = \underline{\qquad}$ $0.\overline{6} = \underline{\qquad}$ $0.\overline{68} = \underline{\qquad}$		
You can write some rational numbers equivers Write each rational number with 1.1353535, 0.73688887, 7.500,	ivalently with fewer dig the fewest digits poss 0.00010. Terminating:	its. ible: 6.22222, –0.10300,	
or terminating decimal.	Repeating:	······································	
2 Rewrite the repeating decimals so that the digit or digits that repeat appear only once below a bar.	 6.22222 =		
3 Rewrite the terminating decimals so	1.1353535=		
the last non-zero digit to the right is	0.73688888		
the final digit.	-0.10300 =		
	7.500 =		
	0.00010 =		
Tevin says 0.1515 is the same as of RACTICE ite the numbers with 8 digits to the right	0.15. Do you agree? Ex t of the decimal point	plain.	
14	2.793	3	
0.57	4 1.745	96	
ite the numbers with as few digits as pos	ssible.		
722.00000000	6 1.555	555555	
3.385385385 <u>385</u>	8 0.412	76276276276	
			5

POWER UP Understanding Irrational Numbers

۲

3 State whether each number is rational or irrational.

does neither.

6 LESSON 1

()

Duplicating any part of this book is prohibited by law. © 2014 Triumph Learning, LLC

۲

0.12627... is _____. 1¹/₄ is _____

B You can classify real numbers by their decim State whether the numbers are rat $\sqrt{15}$, $\sqrt{36}$, $\sqrt{1}$. Write rational numb	I form. A perfect square is any integer times itself. So the square root of a perfect square is rational.
 Determine if each number is square root of a perfect square. State whether each number is rational or irrational. Write each rational number in simplest form. Rational value of the state of the state	are root of a perfect square:,

۲

۲

Joe learns that people sometimes use $\frac{22}{7}$ for π . He writes $\pi = \frac{22}{7}$. Use what you know about rational and irrational numbers to explain why Joe is incorrect.

PRACTICE

State whether each number is rational or irrational. Write each rational number as a decimal in simplest form.

	17.3405	2	<u>3</u>
3	58.539035	4	√ <u>25</u>
5	√5	6	π
	√51	8	3 ¹ / ₆

۲

LESSON LINK

PLUG IN	POWER UP	GO!
Rational numbers can be	Irrational numbers cannot	l see! I can approximate
expressed as decimals that	be expressed as decimals	irrational numbers
terminate or repeat.	that repeat or terminate.	using rational numbers.

Duplicating any part of this book is prohibited by law. © 2014 Triumph Learning, LLC

 (\bullet)

8 LESSON 1

WORK TOGETHER

Approximate $\sqrt{11}$ to the nearest hundredth without a number line.

- Find the integers whose squares are just above and just below 11.
- Find the tenths whose squares are just above and just below 11.
- Find the hundredths whose squares are just above and just below 11.

To the nearest hundredth, $\sqrt{11} \approx 3.32$.

 $3^2 = 9$ and $4^2 = 16$ 11 is closer to 9 than to 16, so $\sqrt{11}$ is closer to 3 than to 4.

۲

 $3.3^2 = 10.89$ and $3.4^2 = 11.56$ 11 is closer to 10.89 than to 11.56, so $\sqrt{11}$ is closer to 3.3 than to 3.4.

 $3.31^2 = 10.9561$ and $3.32^2 = 11.0224$ 11 is closer to 11.0224 than to 10.9561, so $\sqrt{11}$ is closer to 3.32 than to 3.31. l see! I compare the squares of rational numbers to the square of the irrational number I'm trying to approximate.

 (\bullet)

You can use squares to approximate decim	nal places of a square root.
Approximate $\sqrt{8}$ to the nearest h	nundredth.
1 Find the integers whose squares are	$2^2 =$ and $3^2 =$
on either side of 8.	8 is closer to than to,
2 Find the tenths whose squares are on either side of 8.	so $\sqrt{8}$ is close to
3 Find the hundredths whose squares	$2.8^2 = ___$ and $2.9^2 = ___$
are on either side of 8.	8 is closer to, so $\sqrt{8}$ is close to
	$2.82^2 = $ and $2.83^2 = $
	8 is closer to, so $\sqrt{8}$ is close to
	To the nearest hundredth, $\sqrt{8} \approx$
You can use approximations to compare in	rational numbers.
Which is greater, $5\sqrt{11}$ or $6\sqrt{8}$? L	Jse the previous calculations.
1 Find the approximation of the $$	$\overline{11} \approx 3.32 \qquad \sqrt{8} \approx \underline{\qquad}$
irrational factor. 5	√11 ≈ × =
2 Multiply each approximation 6 ² by the rational factors	$\sqrt{8} \approx $ \times =
Compare the approximations	is greater than,
sc	o is greater than
e 01	
How can Greg use the following greater than 1? "If x and v are eac	true statement to compare irrational numbers ch greater than 1 and the square of x is greater than
the square of v, then x is greater	than v."

Duplicating any part of this book is prohibited by law. © 2014 Triumph Learning, LLC

۲

READY TO GO

PRACTICE

Approximate each irrational number to the nearest hundredth.

۲

 $\boxed{1} \quad \sqrt{2}$

2 √6

REMEMBER

Approximate to the nearest integer, then to the nearest tenth, and then to the nearest hundredth.

3 √12

۲

4 √20

HINT You can check your answer by multiplying it by itself. ۲

10 LESSON 1

			6 3π	
$\frac{\pi}{2}$	_		8 π√2	
pproximate each ten state which to $3\sqrt{7}$ and $5\sqrt{2}$	– n product to the near value is greater.	est thousandth. $3\sqrt{7}\approx$		l remember! I multiply the approximation of the irrational factor by the rational factor to approximate
	is	$5\sqrt{2} \approx$		their product.
• $5\sqrt{6}$ and $6\sqrt{5}$		$5\sqrt{6} \approx $		
greater than _				
				_

Approximate the following to the nearest hundredth. Use your answers to problem 1 and $\pi \approx 3.14$ to approximate each irrational factor.

۲

۲

READY TO GO

PROBLEM SOLVING

READ	PAINTING A Max needs to bring wooden boards to a consite. His truck can hold a board that is up to Will his truck hold a board that is $2\sqrt{15}$ ft loop length of the board to the nearest thousant	CIRCLE onstruction o 8 ft long. ong? Find the odth.		
PLAN	 What are you asked to find?			
	How do you solve the problem?			
SOLVE	 Find the integers whose squares are just above and just below 15. Find the tenths whose squares are just above and just below 15. Find the hundredths whose squares are just above and just below 15. Find the thousandths whose squares are just above and just below 15. Find the thousandths whose squares are just above and just below 15. Find the product of the rational approximation and 2. 	$\frac{1}{\sqrt{15} \text{ is closer to}} = 9 \text{ and} \frac{1}{\sqrt{15} \text{ is closer to}}$ $3.8^{2} = \frac{1}{\sqrt{15} \text{ is closer to}}$ $3.87^{2} = \frac{1}{\sqrt{15} \text{ is closer to}}$ $3.872^{2} = \frac{1}{\sqrt{15} \text{ is closer to}}$ $3.873^{2} = \frac{1}{\sqrt{15} \text{ is closer to}}$ $2 \times \underline{\qquad} = \frac{1}{\sqrt{15} \text{ is closer to}}$	$_{-}^{2} = 16$, $3.9^{2} = $, $3.88^{2} = $	riumph Learning, LLC
CHECK	Divide the product by 2. Then square the or should be very close to 15. $\qquad \qquad $	quotient. The solution usandth is of the Max's truck.	check my answer. That can show me if I've made a mistake in my calculations.	icating any part of this book is prohibited by law. © 2014 Tri

12 LESSON 1

۲

۲

CHECKLIST

READ

PLAN SOLVE

CHECK

 (\bullet)

PRACTICE

2

۲

Use the problem-solving steps to help you.

Two legs of a right triangle measure 4 cm and 7 cm. The length of its hypotenuse is $\sqrt{65}$. Approximate the length of the hypotenuse to the nearest thousandth.

۲

The area of the square floor measures 107 ft². Find the approximate length of each side of the floor by approximating $\sqrt{107}$ to the nearest thousandth.

3 Gary wants to rent space at the community garden. He can choose one space with an area of $16\sqrt{17}$ ft² and another space with an area of $17\sqrt{15}$ ft². If Gary wants to rent the larger plot, which should he choose? Explain.

13

Duplicating any part of this book is prohibited by law. © 2014 Triumph Learning, LLC