Support Coach

7

 TARGET
Foundational

 MathematicsSupport Coach, Target: Foundational Mathematics, First Edition, Grade 7
549NASE ISBN-13: 978-1-62928-523-8
Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016
© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher.

Printed in the United States of America. 10987654321

Contents

Lesson 1 Computing Unit Rates 4
Lesson 2 Identifying the Constant of Proportionality 14
Lesson 3 Solving Real-World Problems with Ratios and Percents. 24
Lesson 4 Using Proportional Relationships to Solve Multi-Step Problems 34
Lesson 5 Adding and Subtracting Rational Numbers 44
Lesson 6 Multiplying Rational Numbers 54
Lesson 7 Dividing Rational Numbers. 64
Lesson 8 Problem Solving with Rational Numbers 74
Lesson 9 Factoring and Expanding Linear Expressions 84
Lesson 10 Applying Properties to Solve Problems 94
Lesson 11 Solving Multi-Step Real-World Problems 104
Lesson 12 Solving Word Problems Algebraically 114

Lesson 13 Using Inequalities to Solve Problems 124
Lesson 14 Scale Drawings 134
Lesson 15 Solving Problems with Circles 144
Lesson 16 Area, Volume, and Surface Area 154
Lesson 17 Drawing Inferences about a Population 164
Lesson 18 Making Predictions with Experimental Probability 174
Lesson 19 Probability Models 184
Lesson 20 Tree Diagrams 194
Glossary 204
Math Tools 209

噃 Computing Unit Rates

PLUG IN Using Ratios

A ratio compares two quantities. It can be expressed in different ways.

The ratio of apples to oranges is 8 to 3 .

Write: $\frac{8}{3}$ or $8: 3$ or 8 to 3

ratio

a comparison of two quantities

$$
\frac{6}{5} \text { or } 6: 5 \text { or } 6 \text { to } 5
$$

Equivalent ratios can be written as the same fraction in simplest form. A table of equivalent ratios shows how two quantities are related.

Ice Cubes Used	3	6	12	24	48
Glasses of Iced Tea	1	2	4	8	16

Ok! I can write
a ratio as a
fraction, with a
colon (:), or with
the word "to."

I see! All of the ratios of $\frac{\text { ice cubes }}{\text { glasses }}$ are equivalent because they can be written as the simplified fraction $\frac{3}{1}$.

equivalent ratios

ratios with the same value that can be expressed as the same fraction in simplest form

How can you use the table above to find the number of ice cubes in a given number of glasses of iced tea?

A You can describe quantities with a ratio.

1 Computing Unit Rates

B You can use multiplication and division to find equivalent ratios for $\frac{12}{16}$.

The numbers in the top row are the numerators of the fractions for the ratios.

Complete the table of equivalent ratios.
(1) Multiply both quantities to find equivalent ratios.
(2) Divide both quantities to find more equivalent ratios.

C You can use equivalent ratios to solve problems.
Janet runs 2,640 feet in 5 minutes. Dan runs 1,730 feet in 3 minutes. If they keep the same paces, who would run farther in 15 minutes?
(1) Write the ratio of feet to minutes for each person.
(2) Complete the table to write equivalent ratios.

Janet's Running Times				
Feet	2,640			
Minutes	5	10	15	20

Use the table to compare the ratios.

Dan's Running Times				
Feet	1,730			
Minutes	3	6	9	15

\qquad would run farther in 15 minutes. \qquad would run

8,650 feet and \qquad would run 7,920 feet.

How could you find the number of feet run for a number of minutes that is not in the table?

PRACTICE

Complete the table of equivalent ratios.

1

Feet	3	6	9	
Yards	1	2		

2 \begin{tabular}{|l|c|c|c|c|}

\hline | Text |
| :--- |
| Messages | \& 1 \& 2 \& \& 4

\hline Cost (\$) \& 0.20 \& $\mathbf{0 . 4 0}$ \& 0.60 \&

\hline
\end{tabular}

Solve.

3 Alex reads 12 pages in 10 minutes. Jenna reads 15 pages in 12 minutes. They are both reading a 60-page magazine. Who will finish reading the magazine first?

POWER UP
 Finding Rates from Complex Fractions

A rate is a ratio that compares quantities with different units of measure.
$\frac{3 \text { pounds }}{6 \text { dollars }}$

rate

a ratio that compares quantities with different units of measure

$$
\frac{150 \text { miles }}{3 \text { hours }}
$$ pounds to dollars, so it is a rate.

A complex fraction has

 a fraction in the numerator, denominator, or both.A complex fraction can be rewritten as a division expression.

$$
\frac{\frac{3}{4}}{\frac{2}{3}}=\frac{3}{4} \div \frac{2}{3}
$$

I can think of a complex fraction as a fraction divided by a fraction.

A rate that compares fractions can be written as a complex fraction.

A mouse can move about
4 miles in $\frac{1}{2}$ hour.
$\frac{4}{\frac{1}{2}}$
This complex fraction has a fraction only in the denominator.

complex fraction

a fraction that has a fraction in the numerator, denominator, or both

$$
\frac{7}{8} \div \frac{1}{3}
$$

SCUS $_{3}$
Why do you think it will be helpful to write rates as complex fractions in math problems?

A You can use complex fractions to write rates that include a fraction.
Alexandra completed $\frac{3}{4}$ of her homework in 2 hours. Write this rate as a complex fraction.
(1) Decide what the rate compares.

The rate compares the \qquad amount of homework
(2) Write a complex fraction with the
to \qquad given quantities.

1 Computing Unit Rates

B
You can use complex fractions to write rates that compare two fractions.

I get it! The units of the rate, $\frac{\text { miles }}{\text { hours }}$, tell me which values are in the numerator and the denominator of the complex fraction.

Jamal walks $\frac{7}{8}$ mile in $\frac{1}{2}$ hour. How can you write this rate as a complex fraction?
(1) Understand which quantities are being compared.
(2) Write the complex fraction.

SCO_{5}
Trevor read $\frac{1}{2}$ of a book in 5 days, and he writes this rate as $\frac{\frac{1}{2}}{\frac{1}{5}}$. What can you tell Trevor
about his work?

PRACTICE

Write the rate as a complex fraction.

1 A recipe calls for $\frac{2}{3}$ cup of flour to make $\frac{1}{4}$ of a batch of cookies.

(3) A car used $\frac{3}{5}$ of a tank of gas to travel $\frac{5}{8}$ of the total distance.

(2) A band marched $\frac{3}{4}$ of the parade route in $\frac{2}{3}$ hour.

(4) A sprinkler system uses $\frac{1}{3}$ gallon of water every $\frac{1}{5}$ hour.

READY TO EO Computing Unit Rates

A unit rate is a ratio comparing quantities with different units of measure to a denominator equal to 1 .

$$
\frac{\frac{7}{8} \text { inch }}{1 \text { year }}
$$

This is a unit rate because it compares $\frac{7}{8}$ inch to 1 year.

A unit rate always compares a quantity to 1 unit of another kind of quantity.

You can express a rate written as a complex fraction as a unit rate.

$$
\frac{\frac{3}{4}}{2}=\frac{3}{4} \div \frac{2}{1}=\frac{3}{4} \cdot \frac{1}{2}=\frac{3}{8}
$$

Since any number remains the same when divided by 1 :

$$
\frac{3}{8}=\frac{\frac{3}{8}}{1}
$$

The rate $\frac{\frac{3}{4}}{2}$ can be written as the unit rate $\frac{\frac{3}{8}}{1}$.
I get it! I just simplify the complex fraction and then divide the fraction by 1.

unit rate

a ratio that compares the number of units of one quantity to 1 unit of a second quantity.

> 5 dollars per pound
> unit rate $=\frac{\text { cost }}{\text { pound }}=\frac{\$ 5}{1 \mathrm{lb}}$
> 65 miles per hour
> unit rate $=\frac{\text { miles }}{\text { hour }}=\frac{65 \mathrm{mi}}{1 \mathrm{hr}}$

Why might it be helpful to find unit rates?

LESSON LINK

A ratio compares two quantities. A ratio can be written in three ways. $\frac{3}{5} 3: 5$ 3 to 5	A ratio that includes a fraction can be written as a complex fraction.
I see! I can use what I know about ratios and complex fractions to find unit rates. Then I can use unit rates to solve problems.	

1 Computing Unit Rates

WORK TOGETHER

You can use labeled Fraction Strips to help you solve unit rate problems involving complex fractions.

- The rate of cups to hours is written as a complex fraction.

Division lets me simplify fractions, even complex fractions! I can use fraction strips to model division.

Tara drinks 2 cups of water in $\frac{2}{3}$ hour. At this rate, how much water will Tara drink in an hour?

$$
\frac{\text { cups }}{\text { hours }}=\frac{2}{\frac{2}{3}}
$$

$$
\frac{2}{\frac{2}{3}}=\frac{2}{1} \div \frac{2}{3}=\frac{2}{1} \times \frac{3}{2}=\frac{6}{2}=\frac{3}{1}
$$

You can use unit rates to solve problems.
A recipe calls for $\frac{2}{3}$ cup of sugar to make $\frac{4}{5}$ gallon of iced tea. How much sugar is needed to make 1 gallon of iced tea?

1) Write the rate of sugar to iced tea as a complex fraction.
(2) Write the complex fraction as a division problem, then rewrite as multiplication.
3 Divide both the numerator and the denominator by the denominator to find the unit rate.

$$
\frac{\text { sugar }}{\text { iced tea }}=\frac{\frac{2}{3}}{\frac{4}{5}}
$$

The unit rate is \qquad
___ cup of sugar is needed to make 1 gallon of iced tea.

How can you be sure that you have found the unit rate?

PRACTICE

Find the unit rate. Use Fraction Strips to help you.
1 A recipe calls for 5 eggs for every $\frac{1}{2}$ teaspoon of salt.

The unit rate is \qquad eggs for 1 teaspoon.

Find the unit rate.

(3) $\frac{3}{4}$ mile in $\frac{2}{3}$ hour

2
Kathy's heart beats
 60 times in $\frac{3}{4}$ minute.

The unit rate is \qquad times in 1 minute.
(4) 10 words in $\frac{2}{5}$ minute

The unit rate is \qquad words in 1 minute.

REMFMBER

compares units of one quantity to 1 unit of a different quantity.

The unit rate is \qquad miles in 1 hour.

Compare the unit rates.

(5) Alice skates $\frac{2}{5}$ mile in $\frac{1}{5}$ hour. Elizabeth skates $\frac{2}{3}$ mile in $\frac{2}{9}$ hour. Who skates farther in 1 hour? Alice's Rate

Elizabeth's Rate

Alice skates \qquad miles in 1 hour.

Elizabeth skates \qquad miles in 1 hour.
\qquad skates farther in 1 hour.

Solve.

6 Maurice walked 6 miles on the treadmill in $\frac{3}{2}$ hours. How many miles per hour did Maurice walk?

7 On average, a person who weighs 130 pounds burns 83 calories in $\frac{1}{6}$ hour while playing basketball. At this rate, how many calories are burned in 1 hour?

[^0]I can express a mixed number as an improper fraction and then write it as part of a complex fraction.

PROBLEM SOLVING

CHANGING THE PACE

READ Gabby has 5 weeks to read a novel. She reads 15 pages of a novel in $\frac{3}{7}$ week. At this rate, will Gabby read the 200-page book in time?

- What is the problem asking you to find?
whether Gabby can read \qquad pages in \qquad weeks
- What do you need to know to solve the problem?

Gabby reads \qquad pages in \qquad week.

- How can you solve the problem?

Find the unit rate. Then multiply the unit rate by \qquad weeks. Compare the number to 200 pages.

solve

Write the rate as a complex fraction.

Write the complex fraction as a division problem. Then rewrite as multiplication.
$\frac{15}{\frac{3}{7}}$ \qquad \div \qquad $=$ \qquad \times \qquad
\qquad
\qquad pages per week
Multiply and simplify.
Find the number of pages she can read in 5 weeks. \qquad \times \qquad $=$ \qquad pages

Multiply the unit rate you found by $\frac{3}{7}$ week.
$\frac{\square \text { pages }}{1 \text { week }} \times \frac{3}{7}=$ \qquad $=$ \qquad pages

The number of pages should be 15 with this rate.

Will Gabby finish the 200-page book in time? \qquad

1 Computing Unit Rates

PRACTICE

Use the problem-solving steps to help you.

1 Marita sold 54 cups of lemonade in $\frac{1}{2}$ hour. Jennifer sold

I remember! I need

 to find the unit rate first. Then l'll use the unit rate to find the answer.

CHECKLIST

READ
PLAN
SOLVE CHECK
$2 \mathrm{~A} \frac{3}{4}$-pound box contained 36 fruit tarts. How many tarts would be in a one-pound box?

CHECKLIST

READPLAN
SOLVE
CHECK

3 A coach compared the scoring of four players over the season. Lorraine played in 8 games and scored 128 points. Jana played in 12 games and scored 168 points. Maggie played in 9 games and scored 135 points. Nikki played in 17 games and scored 136 points. Which player scored the greatest number of points per game?

[^0]: TSCUSN

 ## Determine the Rate

 Rachel wants to find the best unit price for potatoes at a grocery store. She sees a 10-pound bag for \$5.90, a 5 -pound bag for $\$ 2.75$, and a $1 \frac{1}{2}$-pound bag for $\$ 0.99$.

