Support Coach

6 TARGET

Foundational Mathematics

Support Coach, Target: Foundational Mathematics, First Edition, Grade 6
548NASE ISBN-13: 978-1-62928-522-1
Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016
© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher.

Printed in the United States of America. 10987654321

Contents

Lesson 1 GCF and LCM 4
Lesson 2 Operations with Decimals 14
Lesson 3 Dividing Fractions by Fractions 24
Lesson 4 Ratios 34
Lesson 5 Solving Problems with Unit Rates 44
Lesson 6 Percents 54
Lesson 7 Locating Rational Numbers on aNumber Line64
Lesson 8 Absolute Value 74
Lesson 9 Ordering Rational Numbers 84
Lesson 10 Numerical Expressions 94
Lesson 11 Evaluating Expressions using Order of Operations 104
Lesson 12 Evaluating Algebraic Expressions 114

Lesson 13 Solving Equations 124
Lesson 14 Inequalities 134
Lesson 15 Independent and Dependent Variables 144
Lesson 16 Surface Area 154
Lesson 17 Volume 164
Lesson 18 Drawing Polygons on the Coordinate Plane 174
Lesson 19 Box Plots 184
Lesson 20 Histograms 194
Glossary 204
Math Tools 211

GCF and LCM

PLUE IN Factor Pairs

In the sentence $2 \times 3 \times 4=24,2,3$, and 4 are called factors of 24 . You multiply 2,3 , and 4 to get the product 24 . If only two factors are used to get a product, then the two factors are called a factor pair. The number 18 has three factor pairs:

$$
1 \times 18=18
$$

$2 \times 9=18$

$3 \times 6=18$

I see! The numbers of equal rows and columns of an array show a factor pair of a number.

factor

a number that is multiplied in a multiplication sentence

$$
2 \times 3 \times 9=54
$$

2,3 , and 9 are factors of 54 .

factor pair

two factors that can be multiplied together to get a product

$$
18 \times 3=54
$$

18×3 is a factor pair of 54 .

product

the answer to a multiplication problem

$$
18 \times 3=54
$$

54 is the product of 18×3.

Does every number have a factor pair?

A You can use counters to find factor pairs of a number.

DO

Find all the factor pairs of 30 .
(1) Write the factor pair that has 1 as a factor.
(2) Arrange counters in equal rows and columns to show as many factor pairs as you can.
(3) Write the factor pairs that the models show.
\qquad \times \qquad

The factor pairs are \qquad \times \qquad \times \qquad
\qquad \times \qquad and \qquad \times \qquad

You can use a multiplication table to find factor pairs of a number. DO

Find the factor pairs of 20.
(1) Write the first factor pair.
(2) Look in the multiplication table for all the 20s. Write equations for each product of 20.
(3) Write the factor pairs. Only list a factor pair one time.

\times \qquad $=20$
\qquad \times \qquad $=20, \frac{4}{10} \times$ \qquad

\qquad
The factor pairs of 20 are \qquad \times \qquad
\qquad \times \qquad and \qquad \times \qquad

PRACTICE

Write the factor pairs shown by the model of a number.

(1) 16

Factor pairs: $\quad 1$ \qquad $\times \longrightarrow, \quad$. \qquad

Complete the factor pairs. Use a multiplication table.

(2) 15

1 $1 \times$ \qquad \times
(3) 25
\qquad 1
\qquad - \times \qquad

449
\qquad \times \qquad \times

POWER UP Multiples

In the sentence $32=4 \times 8,32$ is a multiple of 4 and 8 . Use a multiplication table to tell if a number is a multiple of another number.

Is 24 a multiple of 6 ?
(1) Find 6 in the top row.
(2) Follow the column down to 24 . So 24 is a multiple of 6 .
(3) Follow the row across from 24 to the number at the beginning of the row, 4. This means that 24 is also a multiple of 4.

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6
$\mathbf{2}$	0	2	4	6	8	10	12
$\mathbf{3}$	0	3	6	9	12	15	18
$\mathbf{4}$	0	4	8	12	16	20	$\mathbf{2 4}$
$\mathbf{5}$	0	5	10	15	20	25	30
$\mathbf{6}$	0	6	12	18	24	30	36

multiple

Except for 0, each number within the multiplication table is a multiple of the numbers at the beginning of its column and row.
a number that is the product of a given number and another number

$$
2 \times 3=6
$$

6 is a multiple of both 2 and 3 .
TSCO_{5}
What multiples of 5 are shown in the multiplication table above?

A You can use a multiplication table to tell if a number is a multiple of another number.
DO
Is 16 a multiple of 3 ?
(1) Circle the row for 3 .

2 List the multiples of 3 that are shown in the table.
(3) See if the multiples of 3 include 16.

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6
$\mathbf{2}$	0	2	4	6	8	10	12
$\mathbf{3}$	0	3	6	9	12	15	18
$\mathbf{4}$	0	4	8	12	16	20	24
$\mathbf{5}$	0	5	10	15	20	25	30
$\mathbf{6}$	0	6	12	18	24	30	36

The multiples of 3 are 3
\qquad
So, 16 \qquad a multiple of 3 .

B
You can write multiplication facts to help determine if a number is a multiple of another number.
DO
Is 48 a multiple of 8 ?
(1) Write some multiplication facts for 8 .
2) List the multiples of 8 that you found.
$8 \times 1=\underline{8}$ $8 \times 5=$ \qquad
$8 \times 2=$ \qquad $8 \times 6=$ \qquad
$8 \times 3=$ \qquad
$8 \times 7=$ \qquad
(3) See if the list includes 48. \qquad
$8 \times 8=$
\qquad

Some multiples of 8 are \qquad and \qquad _.

48 \qquad a multiple of 8 .

Now I see! I can think of a multiple as a product. When two numbers are multiplied, the product is a multiple of those numbers.
\qquad
\qquad
 ,

You can use multiplication facts to find missing multiples.
DO
Fill in the missing multiples of 6 .

$$
6, \ldots, \quad 24,30,36,
$$

\qquad 48, \qquad
(1) Write some multiplication facts for 6 .
2) Determine which multiples are missing.
(3) Write the missing

$$
6 \times 1=6
$$

\qquad
\qquad
$6 \times 2=$ \qquad
$6 \times 5=$ \qquad
$6 \times 8=$ \qquad
$6 \times 3=$ \qquad $6 \times 6=$ $6 \times 9=$ \qquad multiples.

The missing multiples are \qquad and \qquad _.

How do you know if a number is a multiple of another number?

PRACTICE

Write is or is not to tell if the number is a multiple of the other number.
128 \qquad a multiple of 7 .
2
48
\qquad a multiple of 9 .

Fill in the missing multiples.

3 Multiples of 4: 4, 8, \qquad 16, 20, 24, \qquad 32, \qquad
(4) Multiples of 7: 7, 14, 21, \qquad 35, 42, \qquad 70

READY TO EO GCF and LCM

To find the greatest common factor (GCF) of two numbers, list all the factors of each number. Then find the factors they have in common. Look for the greatest factor that appears in both lists.

Factors of 14: $\mathbf{1}, 2, \underline{\mathbf{7}}, 14$
Factors of 35: $\mathbf{1}, 5, \underline{\mathbf{7}}, 35$
The common factors of 14 and 35 are 1 and 7.

The greatest factor in both lists is 7.

I get it! The GCF of 14 and 35 is 7.

greatest common factor (GCF)

the common factor of two numbers that has the highest value

Factors of 18: 1, 2, 3, 6, 9, 18
Factors of 27: 1, 3, 9, 27
The GCF of 18 and 27 is 9.

To find the least common multiple (LCM) of two numbers, list the first few multiples of each number. Then find the multiples they have in common. Look for the least multiple that appears in both lists.

Multiples of 4: 4, 8, $\underline{12}, 16,20, \underline{24}$
Multiples of 6: 6, $\underline{\mathbf{1 2}}, 18, \underline{\mathbf{2 4}}, 30,36$
12 and 24 are two common multiples of 4 and 6.
The least multiple in both lists is 12.

```
OK! So the LCM of 4 and 6 is 12.
```


least common multiple (LCM)

the common multiple of two numbers that has the smallest value

Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27
Multiples of 8: 8, 16, 24, 32
The LCM of 3 and 8 is 24.

How do you know when you can stop listing multiples when finding the LCM?

LESSON LINK

1 GCF and LCM

WORK TOGETHER

You can use Grid Paper to find the GCF of two numbers.

- Find the greatest common factor of 18 and 12.
- The rectangles show the factor pairs and factors of 18 and 12 .
- The factors that 18 and 12 have in common are $1,2,3$, and 6 .
- The greatest common factor is 6 .

The GCF can never

 be greater than the numbers you start with.

Grid Paper can be found on p. 241.

A You can use Grid Paper to find the GCF of two numbers. DO

Find the GCF of 42 and 56.
(1) Draw rectangles to find the factor pairs of 42 and 56.
2) List the factors.
(3) Write the factors that 42 and 56 have in common.
(4) Write the greatest common factor.

Factors of 42: \qquad -,

Factors of 56: \qquad
The common factors are \qquad and \qquad -.

The GCF is \qquad —.

Zach used counters to find the LCM of 2 and 3.

I need to multiply when finding the LCM.

Did Zach find the LCM, or does he need more counters? Explain.

PRACTICE

Find the GCF of the pair of numbers.

1. 7 and 27

GCF = \qquad
(3) 10 and 14

GCF = \qquad
(5) 18 and 45

GCF = \qquad

Find the LCM of each pair of numbers.
(7) 10 and 12

LCM $=$ \qquad
GCF = \qquad
(6) 12 and 72

GCF = \qquad
(8) 8 and 4

HINT:

8 is a multiple of itself.

Find the LCM of the pair of numbers.

9 3 and 7

LCM = \qquad

Solve.

11 The GCF of two numbers is 4 . The two numbers are between 11 and 19. What are the two numbers?

109 and 12

I know! I'll list the numbers between 11 and 19 that are multiples of 4 .
\qquad

12 The LCM of two numbers is a multiple of 10 and a multiple of 6 . The two numbers are both less than 10. What is the LCM?

LCM = \qquad

I need to list multiples of each number untill find a common multiple.

Emma says that another way to find the LCM of two numbers is to multiply the two numbers and then divide the product in half. Use Emma's advice to find the LCM of the numbers below. Write is or is not.

Find the LCM of 10 and 12.
$10 \times 12=120$
$120 \div 2=60$
60 \qquad the LCM of
10 and 12.

Find the LCM of 5 and 6.
$5 \times 6=30$
$30 \div 2=15$
15 \qquad the LCM of
5 and 6.

Find the LCM of 11 and 4.
$11 \times 4=44$
$44 \div 2=22$
22 \qquad the LCM of 11 and 4.

Explain why you agree or disagree with Emma, based on the results you found.

READY TO GO

PROBLEM SOLVING

FRUIT BASKETS

READ David is making baskets of fruit. He has 12 apples and 20 pears. If each basket will contain the same number of apples and the same number of pears, what is the greatest number of baskets he can make?

- What is the problem asking you to find?

The \qquad number of baskets David can make
-What do you need to find to solve the problem?
The GCF of \qquad and \qquad —.

- How can you find the GCF of the two numbers?

List the factors of each number. Then find the GCF.

List the factors of each number to find the greatest common factor.

12
Factors: \qquad
\qquad
\qquad
\qquad , and \qquad

20 Factors: \qquad
\qquad - \qquad , and \qquad The common factors are \qquad and \qquad The GCF is \qquad _.

CHECK

Model the problem. Draw an oval to represent each basket.

Divide 12 apples and 20 pears equally among the 4 baskets.
There are \qquad apples in each. There are \qquad pears in each.

The greatest number of baskets David can make is \qquad _.

1 GCF and LCM

PRACTICE

Use the problem-solving steps to help you.

1 A pet store fills aquariums with fish. The store has 27 angelfish and 45 lionfish. If the aquariums will contain the same number of each kind of fish, what is the greatest number of aquariums that the store can fill?

CHECKLIST
READ
PLAN
SOLVE
CHECK

Tara is making a scrapbook using 24 photos and 8 newspaper clippings. She wants to put the same number of photos and clippings on each page. What is the greatest number of scrapbook pages Tara can make?READ
PLAN
SOLVE
CHECK

Wyatt wants to make bags of party favors to give to his friends. Toy cars come in packages of 6 . Gliders come in packages of 8 . What is the least number of toy cars and gliders Wyatt can buy to have an equal number of each?

CHECKLIST

READ
PLAN
SOLVE
CHECK

4 Frankie's Meats sells frankfurters in packages of 10, and hot dog buns in packages of 8 . What is the least number of frankfurters and buns Selma can buy to have an equal number of each for a barbecue?
\square CHECK

