Support Coach

5 TARGET

Foundationa Mathematics

Support Coach, Target: Foundational Mathematics, First Edition, Grade 5
547NASE ISBN-13: 978-1-62928-521-4
Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016
© 2014 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher.

Printed in the United States of America. 10987654321

Contents

Lesson 1 Analyzing Numerical Patterns 4
Lesson 2 Powers of Ten 14
Lesson 3 Reading and Writing Decimals 24
Lesson 4 Comparing Decimals 34
Lesson 5 Multiplying Whole Numbers 44
Lesson 6 Dividing Whole Numbers 54
Lesson 7 Dividing Decimals 64
Lesson 8 Adding and Subtracting Fractions with Unlike Denominators 74
Lesson 9 Fractions as Division 84
Lesson 10 Multiplying Fractions 94
Lesson 11 Areas of Rectangles 104
Lesson 12 Interpreting Multiplication of Fractions 114

Lesson 13 Multiplying Fractions and Mixed Numbers 124
Lesson 14 Dividing Unit Fractions and Whole Numbers 134
Lesson 15 Converting Measurements 144
Lesson 16 Line Plots 154
Lesson 17 Measuring Volume of Rectangular Prisms 164
Lesson 18 Formulas for Volume of Rectangular Prisms 174
Lesson 19 Solving Real-World Problems on Coordinate Planes 184
Lesson 20 Classifying Two-Dimensional Figures. 194
Glossary 204
Math Tools 211

Analyzing Numerical Patterns

PLUE IN Number and Shape Patterns

A rule tells you how to get from one term to the next in a pattern.

This is a numerical pattern.

$$
3,6,9,12,15
$$

Each term in the pattern is 3 more than the term before it. The rule is add 3.

rule

tells how the numbers or figures in a pattern are related

$$
4,8,12,16,20
$$

The rule is add 4 .
alternate between even numbers and odd numbers.

This is a shape pattern.

The rule is triangle, square, pentagon, hexagon.

I can figure out the rule by looking at the shape of each figure in the pattern.

term

a number or figure in a pattern

$$
4,8,12,16,20
$$

The pattern has five terms.

When finding a rule for a numerical pattern, how do you know whether the rule is to add, to subtract, or to multiply?

A You can use a rule to create a number pattern.
Create the number pattern.
The first term is 3 . The rule is multiply by 2 .
(1) Multiply the first term, 3, by 2 to find the second term.
(2) Multiply each term by 2 to find three more terms.

3 Write the five terms in the pattern.
(4) Describe the terms in the pattern.

B You can use a rule to create a shape pattern.
Create the shape pattern.
The rule is small triangle, large triangle, small square, large square.
(1) Draw the first four figures in the pattern: a small triangle, a large triangle, a small square, and a large square.

The pattern small triangle, large triangle, small square, large square repeats.
2. Repeat the pattern.
(3) Describe the terms in the pattern. Study the pattern.

$\underline{\square}$

PRACTICE

Use the rule to complete the pattern. Then describe the terms in the pattern.

1 The rule is add 5 .
10,15
\qquad
\qquad
3 The rule is add 10 .
\qquad
\qquad
\qquad
5 The rule is to add 3 squares to the top of the figure.
\square
\qquad

2 The rule is subtract 4.
\qquad
\qquad
\qquad
\qquad
\qquad

POWER UP Understanding Ordered Pairs

A coordinate plane is a grid formed by a horizontal number line and a vertical number line. An ordered pair of numbers is used to name the location of a point on a coordinate plane.

- The first number is the \mathbf{x}-coordinate.
- The second number is the \boldsymbol{y}-coordinate.
- The origin $(0,0)$ is the point where the x-axis and y-axis meet.
- To plot a point at $(3,4)$, start at the origin. Move 3 units to the right. Then move 4 units up. Draw a point and label the ordered pair.

I see! The ordered pair $(3,4)$ lines up with
3 on the x-axis, and with 4 on the y-axis.

\boldsymbol{y}-coordinate

tells how many units to move up along the y-axis
$(2,3)$
origin
point located at $(0,0)$

Explain where the point $(4,1)$ would be located on a coordinate plane.

A You can use ordered pairs to plot a point on a coordinate plane.
DO
Plot a point at $(1,6)$ on the coordinate plane.
(1) Start at the origin.
(2) Use the x-coordinate to move to the right.
(3) Use the y-coordinate to move up.
(4) Plot and label the point.

The origin is at ($\mathbf{0}, \mathbf{0}$).
The x-coordinate is \qquad , so move \qquad unit to the right.

The y-coordinate is \qquad , so move \qquad units up.

You can use an ordered pair to name a point on the coordinate plane. DO

Name the point located at $(3,1)$ on the coordinate plane.
(1) Start at the origin.
(2) The x-coordinate tells how many units to move to the right.
(3) The y-coordinate tells how many units to move up.
(4) Name the point.
x comes before y in the alphabet, and the x-coordinate comes before the $\boldsymbol{\gamma}$-coordinate in an ordered pair.

The origin is at (\qquad
The x-coordinate is 3_ units to the right.

The y-coordinate is \qquad so move \qquad unit up.

Point \qquad is located at $(3,1)$.

Gabriella says the point $(2,4)$ is 4 units to the right and 2 units up from the origin. Is she correct? What can you tell Gabriella?

PRACTICE

Plot and label the ordered pair on the coordinate plane.
1
$(2,5)$

(2) $(6,3)$

Use the coordinate plane below for problems 3-6. Name the point.

3 Point
\qquad is located at $(4,1)$.

Point \qquad is located at $(5,4)$.Point \qquad is located at $(2,3)$.

6
Point \qquad is located at $(4,5)$.

READY TO EO Analyzing Numerical Patterns

You can use ordered pairs to show relationships between two numerical patterns.

The table shows two patterns.

Rule: Add 1	Rule: Add 2
0	0
1	2
2	4
3	6
4	8

The terms in the table form pairs of values.

Write the pairs of values as ordered pairs.

Rule: Add 1	Rule: Add 2	Ordered Pairs
0	0	$(0,0)$
1	2	$(1,2)$
2	4	$(2,4)$
3	6	$(3,6)$
4	8	$(4,8)$

You can graph the ordered pairs on a coordinate plane.

For each unit you move to the right, you move twice as many units up.

The terms of the first pattern are the x-coordinates, and the terms of the second pattern are the y-coordinates.

I see! Each term in the second pattern is 2 times the corresponding term in the first pattern.

How would the graph change if the rule of the second pattern were to add 3 ?

LESSON LINK

PMLE N	P(1)	EDI
You can follow a rule to create a pattern. The first term is 0 . The rule is add 2. $0,2,4,6,8$	An ordered pair is used to name a point on a coordinate plane.	I get it! I can use two patterns to make ordered pairs. Then I can graph the ordered pairs to show the relationship between the patterns.

WORK TOGETHER

Use Grid Paper to graph the numerical pattern.

- Use the terms in the table to create ordered pairs.
- Graph each ordered pair on the coordinate plane.
- Each term in the second pattern is 1 times the corresponding term in the

Rule: Add 2	Rule: Add 2	Ordered Pairs
0	0	$(0,0)$
2	2	$(2,2)$
4	4	$(4,4)$
6	6	$(6,6)$
8	8	$(8,8)$

 first pattern. Each point on the graph moves to the right and up 2 units from the previous point.

Ordered pairs are
in the form (x, y).

Grid Paper can be found on p. 211.

You can use a table to help you graph and label ordered pairs. Complete the pattern in the table. Graph the pattern.
(1) Write the terms in each pattern.

2 Use the terms to create ordered pairs.
(3) Graph and label the ordered pairs.
(4) Describe the pattern.

Rule: Add 1	Rule: Add 3	Ordered Pairs
0	0	$(0,0)$
		$()$,
		$()$,
		$()$,
		$()$,

Each term in the second pattern is \qquad the corresponding term in the first pattern.

Each point on the graph moves \qquad right and \qquad units up from the previous point.

Look at these ordered pairs: (0, 0), (1, 4), (2, 8), $(3,12),(4,16)$. What is the relationship between the ordered pairs?

Look at how the x - and y-coordinates change from one ordered pair to the next.
times unit to the

PRACTICE

Use the patterns to create ordered pairs.
1

Rule: Add 3	Rule: Add 6	Ordered Pairs
0	0	$()$,
3	6	$()$,
6	12	$())$,
9	18	$())$,
12	24	$()$,

2

Rule: Add 1	Rule: Add 5	Ordered Pairs
0	0	$(\mathbf{0 , 0)}$
1	5	$(\mathbf{1 , 5)}$
2	10	$())$,
3	15	$())$,
4	20	$()$,

REMEMBER
Look at the first
pattern for the
x-coordinates.

Complete each pattern and create ordered pairs. Then describe the ordered pairs of the patterns.

3

Rule: Add $\mathbf{1}$	Rule: Add 4	Ordered Pairs
0	0	$()$,
		$()$,
		$()$,
		$()$,
		$()$,

\qquad
\qquad

5

Rule: Add $\mathbf{3}$	Rule: Add 3	Ordered Pairs
0	0	$()$,
		$()$,
		$()$,
		$()$,
		$()$,

\qquad
\qquad

4 \begin{tabular}{|c|c|c|}

\hline | Rule: |
| :---: |
| Add $\mathbf{2}$ | \& | Rule: |
| :---: |
| Add $\mathbf{6}$ | \& | Ordered |
| :---: |
| Pairs |

\hline 0 \& 0 \& $(\mathbf{0 , 0})$

\hline 2 \& 6 \& $(\mathbf{2 , 6})$

\hline \& \& $()$,

\hline \& \& $()$,

\hline \& \& $()$,

\hline
\end{tabular}

HINT
Look at the
second pattern for
the y-coordinates.

6

Rule: Add 4	Rule: Add 8	Ordered Pairs
0	0	$()$,
		$()$,
		$()$,
		$())$,
		$()$,

Complete each pattern and create ordered pairs. Then graph and label the ordered pairs.

7

Rule: Add 2	Rule: Add 4	Ordered Pairs
0	0	$()$,
		$()$,
		$()$,
		$()$,
		$())$,

What do you notice about the points on the graph?
\qquad
\qquad

Solve.

8 Thomas plotted the points $(0,0),(1,6),(2,12),(3,18)$, and $(4,24)$ on a coordinate plane. What do you notice about the ordered pairs?
\qquad
\qquad

9 Avery used the rule add 3 to create one pattern, and the rule add 6 to create another pattern. Then she wrote ordered pairs. What is the relationship between the corresponding terms?

> Look at how each ordered pair relates to the next ordered pair.

Find the Pattern

Mato used terms from two patterns to write these ordered pairs:

Compare the ordered pairs to find each pattern. $(0,0),(2,8),(4,16),(6,24),(8,32)$. Lillian says the next ordered pair will be $(16,34)$. What can you tell Lillian?

What were the rules for Mato's patterns?

READY TO GO

PROBLEM SDLVING

NUMBER GAMES

Abby uses the rule add 5 to make a pattern. Jayden uses the rule add 10 to make a pattern. If both girls start at 0 , which number would Jayden say when Abby says 40?

- What is the problem asking you to find?

Which \qquad Jayden would say when Abby says 40

Abby's Pattern Rule: Add 5	Jayden's Pattern Rule: Add 10
0	0
5	10
10	20
15	30
20	40

- What do you need to know to solve the problem?

What is the rule for Abby's pattern? \qquad
What is the rule for Jayden's pattern? \qquad
The number that Abby says \qquad

- How can you solve the problem?

You can identify the relationship between the corresponding terms of the two patterns.
SOLVE Look for a relationship between the terms of the two patterns.
\qquad
$5 \times \ldots=10$
$10 \times$ \qquad = \qquad -
$15 \times$ \qquad $=$ \qquad
$20 \times$ \qquad $=$ \qquad
The terms in Jayden's pattern are \qquad times the terms in Abby's pattern.

When Abby says 40 , Jayden says $40 \times$ \qquad $=$ \qquad —.

Find the next 4 terms for each pattern.
Abby: $0,5,10,15,20$, \qquad , \qquad
\qquad
Jayden: $0,10,20,30,40$, \qquad
I get it! If I am
correct, the
terms of the two
patterns will
match my answer.

Jayden will say \qquad when Abby says 40 .

PRACTICE

Use the problem-solving steps to help you.

1 Jenna writes this pattern: $0,10,20,30,40$. Bailey writes this pattern: $0,100,200,300,400$. If the girls continue their patterns, what number will Bailey write when Jenna writes 90 ?

I will look for a relationship between the terms of the two patterns.

2 Robert uses the rule add 5 to create a pattern. Kento uses
the rule add 15 to create a pattern. Both patterns start at 0 . What number will Kento say when Robert says 25 ? \square READPLAN
SOLVE
CHECK

Kyle and Jake each use a pattern to decide how many pages to read each night. Kyle's rule is to add 3 pages each night. Jake's rule is to add 6 pages each night. If Kyle reads 9 pages in a night, how many pages will Jake read?

CHECKLIST

READPLAN
SOLVE
CHECK

