CIINCS
 Mathematics

A 5

5i)

The Number System

Module

1 The Number System

Lesson 1 Factors and Multiples 4
Lesson 2 Divide Whole Numbers 8 6.ns. 2
Lesson 3 Integers 12Lesson 4 Absolute Value16
6.NS.7.c, 6.NS.7.d
Lesson 5 Rational Numbers 20
6.NS.5, 6.NS.6.c, 6.NS.7.c
Lesson 6 Compare and Order Rational Numbers. 24
Lesson 7 Add and Subtract Decimals. 28
Lesson 8 Multiply and Divide Decimals 32
Lesson 9 Divide Fractions and Mixed Numbers. 36
6.NS. 1
Lesson 10 The Coordinate Plane 40
6.NS.6.b, 6.NS.6.c
Lesson 11 Solve Problems in the Coordinate Plane 44
6.NS.6.b, 6.NS. 8
Glossary 48
Math Tools 51

Key Words

factor
greatest common factor least common multiple multiple whole number

A whole number is in the set of counting numbers and zero: $\{0,1,2,3,4, \ldots\}$. A multiple of a number is the product of the number and any whole number. The least common multiple, or LCM, is the smallest number that is a multiple of two numbers. Zero is not considered a common multiple of two numbers.

A factor is a number that divides evenly into another number. Every whole number greater than 1 has at least 2 factors: itself and 1. The greatest common factor, or GCF, is the largest number that is a factor of two numbers.

Example 1

What is the least common multiple (LCM) of 8 and 12 ?
List the first 10 multiples of 8 and 12. Look for common multiples.
multiples of $8: 0,8,16,24,32,40,48,56,64,72, \ldots$
multiples of $12: 0,12,24,36,48,60,72,84,96,108, \ldots$
There are three common multiples in the lists: 24,48 , and 72.
The smallest number out of those three multiples is 24 .
The least common multiple of 8 and 12 is 24 .

Example 2

What is the greatest common factor (GCF) of 12 and $20 ?$
List the factors of 12 and 20. Look for common factors.
factors of 12: 1, 2, 3, 4, 6, and 12.
factors of 20: 1, 2, 4, 5, 10, and 20.
There are three common factors in the lists:
1,2 , and 4 . The greatest number out of those three factors is 4 .

The greatest common factor of 12 and 20 is 4.

IDENTIFY

What are the LCM and GCF of 4 and 6 ?

Guided Practice

(1) What is the least common multiple of 6 and 10 ?

Step 1 List the first 10 multiples of 6.
\qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad

REMEMBER

The first multiple of a whole number is 0 , but 0 cannot be LCM.

Step 2 List the first 10 multiples of 10.
\qquad , \qquad

Step 3 Find the common multiples in the lists. Then find the smallest number out of those common multiples.

The smallest number is \qquad .

THINK

There may be more than one common multiple in your lists. Find the least The least common multiple of 6 and 10 is \qquad . common multiple.

2 What is the greatest common factor of 16 and 26 ?
Step 1 List all the factors of 16.
\qquad , \qquad , \qquad , \qquad , \qquad
Step 2 List all the factors of 26.

REMEMBER

The first factor of any whole number is 1 .

Step 3 Find the common factors in the lists. Then find the greatest number out of those common factors.

The greatest number is \qquad .

The greatest common factor of 16 and 26 is \qquad .

Independent Practice

1. How can you find the greatest common factor of two numbers?
\qquad
\qquad
2. What is a multiple of a number?
\qquad
\qquad

Find the least common multiple of each pair of numbers.
3. 4 and 5 \qquad 4. 2 and 5 \qquad
5. 1 and 7 \qquad 6. 3 and 9 \qquad number?

What are the factors of each number?
7. 4 and 8 \qquad
8. 4 and 6 \qquad

Find the greatest common factor of each pair of numbers.
9. 3 and 4 \qquad 10. 2 and 8 \qquad
11. 5 and 10 \qquad
12. 8 and 12 \qquad
13. 10 and 15 \qquad 14. 9 and 15 \qquad
15. Hot dogs come in packs of 6 . Buns come in packs of 8 . What is the fewest number of hot dogs or buns you can buy to have the same number of each?

Find the least common multiple of each pair of numbers.
16. 2 and 11 \qquad
18. 9 and 11 \qquad 19. 7 and 10 \qquad
20. 5 and 7 \qquad 21. 8 and 12 \qquad
22. 10 and 11 \qquad 23. 7 and 9 \qquad

Find the greatest common factor of each pair of numbers.
24. 75 and 20 \qquad
26. 14 and 49 \qquad
28. 38 and 95 \qquad
30. 22 and 90 \qquad 31. 39 and 78 \qquad

Solve each problem.

32. Alfonso buys 12 bagels and 8 muffins. He wants to split the items into bags with the same number of bagels and the same number of muffins in each bag. What is the greatest number of bags that Alfonso can make without any items left over?
33. There are 24 students in a 6th-grade class. There are 30 students in a 7th-grade class. The students in each class are split into equal-size groups for a field trip. What is the greatest number of groups to make if there is the same number of 6th-grade students and the same number of 7 th-grade students in each group?

OMOU CDOE Emo CIINCS
 Mathematics

Module
 2

Ratios and Proportional Relationships; Expressions and Equations

Lesson 1
Ratios 4 6.RP. 1
Lesson 2
Equivalent Ratios 8 6.RP.3.a
Lesson 3 Unit Rates 126.RP.2, 6.RP.3.bLesson 4 Percents166.RP.3.c
Lesson 5 Convert Measurements 20
6.RP.3.d
Lesson 6 Write Expressions 24
Lesson 7 Evaluate Expressions 28
Lesson 8 Equivalent Expressions 32
Lesson 9 Solve Equations 36
Lesson 10 Linear Equations 40
Lesson 11 Use Equations to Solve Problems 44
Lesson 12 Inequalities 48
Glossary 52
Math Tools 53
6.EE. 9

6.EE. 9
6.EE.6, 6.EE.7, 6.EE. 9

6.E.E.6, 6.EE.7. 6.EE. 96.EE.5, 6.EE.6, 6.E. 8
6.EE.1, 6.E..2.c
6.EE. $\mathbf{6}$.EE. 4
6.EE.5, 6.EE. 7
6.EE.5, 6.EE.6.6 6.EE. 8

Key Words

denominator greatest common factor (GCF) numerator ratio

A ratio is a comparison between two numbers. A ratio can be written in three ways.

$$
3 \text { to } 4
$$

$$
3: 4
$$

$$
\frac{3}{4}
$$

The order of the numbers in a ratio is important. The first number being compared comes first in the ratio. When a ratio is expressed as a fraction, the first number appears as the numerator and the second number appears as the denominator.

To simplify a ratio, divide both numbers by the greatest common factor (GCF).

Example 1

What is the ratio of squares to circles? Describe the ratio in words.

There are 4 squares. There are 3 circles.
Describe the ratio with squares first.
The ratio of squares to circles is 4 to 3 .

Example 2

What is the ratio of footballs to all the balls?

There are 2 footballs. There are 6 balls in all.
The ratio of footballs to balls is 2 to 6 or $\frac{2}{6}$.
This can be simplified: $\frac{2 \div 2}{6 \div 2}=\frac{1}{3}$.

For every 1 football, there are 3 balls.
The ratio of footballs to all the balls is 1 to 3 .
It can also be written as 1:3 or $\frac{1}{3}$.

LIST

A fruit bowl has 3 apples and 1 banana. Write three different ratios describing the fruits in the bowl.

Guided Practice

1 Write the ratio of pencils to paper clips as a fraction. Then, describe the ratio using words.

Step 1 Count the number of pencils.
Count the number of paper clips.
There are \qquad pencils.

There are \qquad paper clips.

There paper clips.

Step 2 Write a fraction comparing the pencils to the paper clips.

$$
\frac{\text { pencils }}{\text { paper clips }}=\frac{\square}{\square}
$$

The ratio of pencils to paper clips is

REMEMBER

Write the first number being compared in a ratio as the numerator.

For every \qquad pencils, there are \qquad paper clips.

2 Write the ratio of vowels to all letters in the bag as a:b. Then, describe the ratio using words.

Step 1 Count the number of vowels.
Count the number of letters in total.
There are \qquad vowels.
There are \qquad letters in total.

Step 2 Write a ratio comparing the vowels to the letters in total. Simplify by using the GCF.
vowels: all letters = \qquad : \qquad

THINK

To find the greatest common factor, find the greatest whole number that divides evenly into 4 and 10.
$4 \div$ \qquad $=$ $10 \div$ \qquad $=$

The ratio of vowels to letters in the bag is \qquad .

For every \qquad vowels, there are \qquad letters in the bag.

Independent Practice

1. How can you express a ratio as a fraction?
\qquad
\qquad
2. How do you simplify a ratio?
\qquad
\qquad

Which object is mentioned first in the ratio?
Which number should be listed first in the ratio?

Write each ratio in three ways.

3. What is the ratio of moons to stars?

4. What is the ratio of guitars to drums?

5. What is the ratio of triangles to ovals?

6. What is the ratio of males to people?

\qquad
7. In one week, a computer shop sold 13 laptop computers and 7 desktop computers. What was the ratio of laptop computers to all computers that were sold in the week? Describe the ratio using words.

Din CIINCS
 Mathematics

Geometry

Module

3
 Geometry

Lesson 1 Areas of Triangles 4
Lesson 2 Areas of Quadrilaterals 8 6.G. 1
Lesson 3 Areas of Composite Polygons 12 6.G. 1
Lesson 4 Polygons on the Coordinate Plane 16 6.G. 3
Lesson 5 Solve Problems with Area. 20 6.G. 1
Lesson 6 Solid Figures 24 6.G. 4
Lesson 7 Surface Area 28 6.G. 4
Lesson 8 Volume 32 6.G. 2
Glossary 36
Math Tools 39

Key Words

area
rectangle triangle

Area is the measure of the space inside a two-dimensional figure. Area (A) is measured in square units, such as square meters $\left(\mathrm{m}^{2}\right)$ or square feet $\left(\mathrm{ft}^{2}\right)$.

Two triangles with the same shape and size can be used to form a rectangle. The area of the rectangle is the product of its length and width: $A=I w$. The area of one triangle, therefore, is half the area of the rectangle.

The formula for the area of a triangle is $A=\frac{1}{2} b h$, where b stands for the base and h stands for the height. The base of the triangle is related to the length of the rectangle. The height of the triangle is related to the width of the rectangle.

Example

The rectangular grid has a length of 6 inches and a height of 4 inches. A shaded triangle is placed over the grid. What is the area of the shaded triangle?

4 in.

6 in.

Find the area of the rectangular grid.

$$
\begin{aligned}
& A=I w \\
& A=6 \mathrm{in} . \times 4 \mathrm{in} .=24 \mathrm{in}^{2}{ }^{2}
\end{aligned}
$$

The area of the triangle is half the area of the grid.

$$
24 \text { in. }^{2} \div 2=12 \text { in. } .^{2}
$$

The area of the shaded triangle is $12 \mathrm{in} .^{2}$.

DRAW

Draw a triangle with an area of $4 \mathrm{in}^{2}$ on the following grid.

4 in.

$\frac{1}{-3}$

Guided Practice

1 A shaded triangle is connected to another triangle with the same dimensions to form a rectangle. What is the area of the shaded triangle?

12 in.

5 in.

THINK

The commutative property of multiplication states that the order of the factors does not matter. So the order of the length and the width does not matter.
$A=$ \qquad \times \qquad
$A=$ \qquad
Step 2 Divide the area of the rectangle by 2 to find the area of the triangle.
$A=$ \qquad $\div 2=$ \qquad

The area of the shaded triangle is \qquad .

2 What is the area of the shaded triangle?

Step 1 Write the formula for the area of a triangle.
$A=\frac{1}{2} \times$ \qquad \times \qquad
Step 2 Substitute the values into the formula. Then solve.

REMEMBER

The length of the rectangle is the base of the triangle.
The width of the rectangle is the height of the triangle.
The area of the shaded triangle is \qquad .

Independent Practice

1. What is area?
\qquad
\qquad
2. How can you find the area of any triangle?
\qquad
\qquad

How can I use the given base and height to find the area of the triangle?

Find the area of each triangle.
3.

4.

5.

6.

Solve.

7. The sail of a sailboat is in the shape of a right triangle. Its height is 6 ft and its base is 4 ft . What is the area of the sailboat's sail?

Find the area of each triangle.
8.

9.

10.

11.

12.

13.
10.5 cm

\qquad

Solve each problem.

14. A farmer walks along the perimeter of her triangular field by walking 13.5 yards north, walking 24.4 yards west, and then returning to the original spot. What is the area of the farmer's field?
\qquad
15. A jeweler carves a piece of driftwood into a flat triangular shape to create a pendant. The base of the driftwood is 28.5 mm , and its height is 12 mm . What is the area of the jeweler's piece of driftwood?

Onir CIINCS
 Mathematics

Module

4 Statistics and Probability

Lesson 1 Measures of Center 4
Lesson 2
Measures of Variability
Lesson 3 Dot Plots 12
Lesson 4 Use a Plot to Choose the Best Measure 16
Lesson 5 Box Plots 20
Lesson 6 Histograms 24
Glossary 28
Math Tools 298 6.SP.2, 6.SP. 36.SP.4, 6.SP.5.a, 6.SP.5.c6.SP.4, 6.SP.5.b, 6.SP.5.c
6.SP.4, 6.SP.5.a, 6.SP.5.c

Key Words

data
mean
measure of center median mode

Data is a collection of information, such as costs, ages, or weights. A measure of center is a measurement that summarizes a data set with a single number. Measures of center include the mean, median, and mode.

The mean is the sum of the values in a data set divided by the number of values in the set. The median is the middle value in a data set when it is in numerical order. The mode is the value that appears most often in a data set.

A question is statistical when the data collected to answer the question contains variability. A question is not statistical if the data does not contain variability. For example, the question, "What are the heights of the last 10 U.S. presidents?" is a statistical question. The answers, or the data set, will vary since the presidents are not all the same height.

The data for a statistical question can be described by its measures of center.

Example

The ages of the 10 friends at a party are $11,12,14,10,11,14,11,16,8$, and 13.
What are the measures of center of the data set?
Find the mean.

$$
\begin{aligned}
\text { mean } & =\frac{\text { sum of the values }}{\text { number of values }} \\
& =\frac{11+12+14+10+11+14+11+16+8+13}{10} \\
& =\frac{120}{10}=12
\end{aligned}
$$

Find the median.
There is an even number of values, so the median is the mean of the two middle values.
$8,10,11,11,11,12,13,14,14,16$

$$
\text { median }=\frac{11+12}{2}=11.5
$$

Find the mode.
The number 11 appears three times in the data set, more than any other number.

APPLY

A student received an 84, an 80, an 80 , and a 92 on four tests. Choose the measure of center that would give the student the highest average. Explain.

$\frac{1}{-3}$

Guided Practice

Billy surveys 13 students in his class by asking, "How many pets do you have?"
The results are shown below.

$$
7,0,3,2,0,0,12,1,0,4,1,2,7
$$

Determine whether Billy's question is statistical. Then, determine the measures of center from his data.

Step 1 Determine whether the question is a $\leftarrow---$ statistical question.

Will the answers to Billy's question vary?

REMEMBER

A statistical question will provide a variety of answers.

So, Billy's question \qquad a statistical question.

Step 2 Find the mean of the data set.
Find the sum of all the values. \qquad
Count the number of values in the data set. \qquad

THINK

The number 0 does not change a sum, but it must be counted in the number of values.

Divide the sum by the number of values: \qquad \div \qquad $=$ \qquad

REMEMBER

A data set can have no modes, 1 mode, or more than 1 mode.
Step 3 Find the mode of the data set.
The number 0 appears \qquad times.

The number 1 appears \qquad times.

The number 2 appears \qquad times. The number 7 appears \qquad times.

The number(s) that appears most often is \qquad .

Step 4 Find the median of the data set.
List the values in the data set in order from least to greatest.

The number in the middle of the data set is \qquad .

The measures of center are mean $=$ \qquad , median = \qquad , and mode = \qquad .

Independent Practice

1. Describe how you can find the mean of a data set.

Determine whether each question is a statistical question or not. Write yes or no.
2. In what year was the U.S. voting age reduced to 18 ? \qquad
3. What were the ages of voters in the last election? \qquad
4. What scores did the students in Ms. Fried's class get on the last quiz? \qquad
5. How many students are in Ms. Fried's class? \qquad

Solve.

6. The table below shows how many pieces of mail Tomas received one week.

Day	Monday	Tuesday	Wednesday	Thursday	Friday
Pieces of Mail Received	6	6	11	12	10

What is the mean of the numbers of pieces of mail that Tomas received?

What is the median of the numbers of pieces of mail that Tomas received?

What is the mode of the numbers of pieces of mail that Tomas received?

Find the mean, median, and mode of each data set.
7. $14,17,15,23,10,23$
mean: \qquad
median: \qquad
mode: \qquad
9. $45,55,30,101,90,30,90$
mean: \qquad
median: \qquad
mode: \qquad
8. $81,99,89,91,85,95$
mean: \qquad
median: \qquad
mode: \qquad
10. $10,19,49,20,0,38,83,97$
mean: \qquad
median: \qquad
mode: \qquad

Solve.

11. A nature park has six hiking trails. The following table shows the names of the trails and their lengths, in km.

Trail	Northern	Woodsy	Belleview	Grand	Falls	Marathon
Length (in km)	7	4	11	17	7	26

What is the mean length of a hiking trail in the nature park? \qquad
What is the median length of a hiking trail in the nature park? \qquad
What is the mode length of a hiking trail in the nature park? \qquad

