

Module
 Operations and Algebraic Thinking; Number and Operations in Base Ten

		Common Core State Standards
Lesson 1	Write and Interpret Expressions 4	5.OA. 2
Lesson 2	Evaluate Expressions 8	5.0A. 1
Lesson 3	Patterns . 12	5.0A. 3
Lesson 4	Graph Patterns 16	5.0A. 3
Lesson 5	Multiply Whole Numbers 20	5.NBT. 5
Lesson 6	Divide Whole Numbers 24	5.NBT. 6
Lesson 7	Writing Division as an Equation 28	5.NBT. 6
Lesson 8	Read and Write Decimals 32	5.NBT.1, 5.NBT.3.a
Lesson 9	Compare Decimals 36	5.NBT.3.b
Lesson 10	Round Decimals 40	5.NBT. 4
Lesson 11	Powers of Ten 44	5.NBT. 2
Lesson 12	Multiply and Divide by Powers of Ten 48	5.NBT. 2
Lesson 13	Add Decimals 52	5.NBT. 7
Lesson 14	Subtract Decimals 56	5.nBT. 7
Lesson 15	Multiply Decimals 60	5.NBT. 7
Lesson 16	Divide Decimals 64	5.NBT. 7
Glossary 68	
Math Tools	. 71	

Write and Interpret Expressions

Key Words

expression operation signs parentheses

An expression is a combination of numbers and operation signs such as,,$+- \times$, and \div. Parentheses show which operation to do first. Examples of expressions are:

Expression in Words
the sum of 12 and 16
the difference of 9 and 4, then multiply by 8
divide 350 by 3 , then add $1 \quad(350 \div 3)+1$ or $1+(350 \div 3)$

Example

Lyle bought a ticket to a soccer game for $\$ 16$. He paid with a $\$ 20$ bill.
Write an expression to show how much change Lyle received.
Write the expression using words.
\$20 minus the cost of the ticket \$20 minus \$16

Write the expression using numbers.
20-16
Lyle's change can be shown by the expression 20 - 16.

LIST

Words such as sum and more tell you to add.

List two words that tell you to subtract.

List two words that tell you to multiply.

List two words that tell you to divide.

Guided Practice

1 Each box of fruit has 8 apples and 6 oranges. There are 3 boxes of fruit. How much fruit is there in all?

Write an expression to show the total amount of fruit.

Step 1 Write the expression in words.
\qquad times the sum of \qquad and \qquad
Step 2 Write an expression using numbers and operation signs.

THINK

Add the apples and oranges to get the amount of fruit in each box.

REMEMBER

Parentheses show which operation to do first.

The expression is \qquad .

2 At the Shack, 31 burgers sold in the first hour and 15 burgers sold in each of the next 5 hours. How many burgers were sold in all?

Write an expression to show the total number of burgers sold.

REMEMBER

An expression does not have an equal sign.

Step 1 Write the expression in words.
\qquad plus the product of \qquad and \qquad
Step 2 Write an expression using numbers and operation signs.

The expression is \qquad .

Independent Practice

1. Is $3 \times(4+2)$ an expression? Explain why or why not.
\qquad
\qquad
2. When writing an expression, when should you use parentheses?
\qquad
\qquad

3. the difference of 492 and 389 \qquad
4. the product of 25 and 10 \qquad
5. 14 plus the product of 12 and 15 \qquad
Do I need to include parentheses?
6. the quotient of 45 and 9 , plus 6 \qquad
7. add 6 and 12 , then divide by 2 \qquad
8. Dinner costs $\$ 24$. You give the cashier $\$ 30$. Write an expression to show the change you will receive.

Write an expression.

9. subtract 36 from 100 , then multiply by 8 \qquad
10. the sum of 382 and 420 , divided by 2 \qquad
11. add 4 and 7 , then multiply by 16 \qquad
12. divide the product of 50 and 3 by 5 , then add 2 \qquad
13. 40 cars divided equally among 5 rows \qquad
14. 3 trays of ice cubes with 12 cubes per tray, plus 4 cubes gone
\qquad
15. 20 seats with 2 students per seat and 1 student extra \qquad

Solve each problem.

16. Tickets to the school play cost $\$ 6$ per person. The school made $\$ 3,168$ selling tickets. Write an expression to show how many tickets were sold.
\qquad
17. On a backpacking trip, Cara hiked 20 miles in two days.

The first day she hiked 12 miles. Write an expression to show how many miles Cara hiked the second day.

Module

2 Number and Operations-Fractions

Lesson 1 Equivalent Fractions. 4
Lesson 2 Improper Fractions and Mixed Numbers 8 5.N. 1
Lesson 3 Add and Subtract Like Fractions 12
Lesson 4 Add and Subtract Unlike Fractions 16
5.NF.1, 5.NF. 2
Lesson 5 Understanding Multiplication of Fractions 20
5.NF.5.a, 5.NF.5.b
Lesson 6 Multiply Fractions 24
Lesson 7 Fractions as Division 28
Lesson 8 Divide with Fractions 32
5.NF.4.a, 5.NF.4.b, 5.NF. 6
5.NF. 3
5.NF.7.a, 5.NF.7.b, 5.NF.7.c
Glossary 36
Math Tools 37
Common Core State Standards

Key Words

equivalent

fractions fraction

A fraction names part of a whole or a group. Fractions that name the same amount are called equivalent fractions. You can use number lines to find equivalent fractions.
You can also use multiplication or division to find equivalent fractions. Just multiply or divide the numerator and denominator by the same number. Multiplying or dividing the numerator and denominator by the same number is the same as multiplying or dividing by 1 , so the value of the fraction is unchanged.

Example 1

Find a fraction equivalent to $\frac{3}{4}$.
Use the number lines. Find a fraction that is the same distance from 0 as $\frac{3}{4}$.

$\frac{6}{8}$ is equivalent to $\frac{3}{4}$.

Example 2

Find a fraction equivalent to $\frac{1}{2}$.
Multiply the numerator and denominator by the same number.

$$
\frac{1}{2}=\frac{1 \times 3}{2 \times 3}=\frac{3}{6}
$$

$\frac{3}{6}$ is equivalent to $\frac{1}{2}$.

APPLY

Find at least two other fractions equivalent to $\frac{1}{2}$. Explain how you know.

Guided Practice

(1) $\frac{1}{3}=\frac{\square}{6}$

Step 1 Use the number lines. Circle the fraction that is the same distance from 0 as $\frac{1}{3}$.

REMEMBER

Equivalent fractions are the same distance from 0 on a number line.

Step 2 Write the numerator of the equivalent fraction.

$$
\frac{1}{3} \text { is equivalent to } \frac{\square}{6} \text {. }
$$

$$
\frac{1}{3}=\frac{\square}{6}
$$

2 Find two fractions equivalent to $\frac{4}{6}$.
Step 1 Multiply the numerator and denominator by the same number.

$$
\frac{4}{6}=\frac{4 \times 2}{6 \times 2}=\frac{\square}{12}
$$

Step 2 Divide the numerator and denominator by the same number.

$$
\frac{4}{6}=\frac{4 \div 2}{6 \div 2}=\frac{\square}{3}
$$

THINK

Multiplying or dividing the numerator and denominator by the same number is like multiplying or dividing by 1 .
$\frac{2}{2}=1$
and \qquad are equivalent to $\frac{4}{6}$.

Independent Practice

1. How can you use number lines to find equivalent fractions?
2. How can you use multiplication or division to find equivalent fractions?
\qquad
\qquad

Use the number lines to find equivalent fractions.
Write the numerator.

3. $\frac{1}{4}=\frac{\square}{8}$
4. $\frac{3}{4}=\frac{\square}{8}$
5. $\frac{4}{8}=\frac{\square}{4}$

Use multiplication to find an equivalent fraction. Write the numerator or denominator.
6. $\frac{1}{5}=\frac{\square}{10}$
7. $\frac{3}{8}=\frac{\square}{16}$
8. $\frac{2}{3}=\frac{6}{\square}$
9. For a recipe, Andre needs $\frac{1}{2}$-cup butter. The butter comes in $\frac{1}{4}$-cup sticks. How many $\frac{1}{4}$-cup sticks of butter does he need?

Use multiplication to find an equivalent fraction.
10. $\frac{1}{3}=$ \qquad 11. $\frac{3}{6}=$ \qquad 12. $\frac{2}{5}=$ \qquad
13. $\frac{3}{5}=$ \qquad 14. $\frac{2}{7}=$ \qquad 15. $\frac{3}{4}=$ \qquad
16. $\frac{7}{8}=$ \qquad 17. $\frac{3}{7}=$ \qquad 18. $\frac{5}{6}=$ \qquad

Use division to find an equivalent fraction.
19. $\frac{8}{10}=$ \qquad
20. $\frac{6}{12}=$ \qquad
21. $\frac{8}{12}=$ \qquad
22. $\frac{2}{14}=$ \qquad 23. $\frac{5}{15}=$ \qquad 24. $\frac{2}{10}=$ \qquad
25. $\frac{10}{15}=$ \qquad 26. $\frac{8}{16}=$ \qquad 27. $\frac{5}{20}=$ \qquad

Solve each problem.

Sun-Hee cut a sandwich into sixths. She ate $\frac{1}{3}$ of the slices.
28. How much of the sandwich is left in sixths?
\qquad
29. How much of the sandwich is left in thirds?

Module
3

Measurement, Data, and Geometry

Common Core State Standards
Lesson 1 Convert Customary Units 4 5.MD. 1
Lesson 2 Convert Metric Units 8 5.MD. 1
Lesson 3 Understand Volume 12
Lesson 4 Volumes of Rectangular Prisms 16
5.MD.4, 5.MD.5.b, 5.MD.5.c
Lesson 5 Line Plots 20
5.MD. 2
Lesson 6 Coordinate System 245.G. 1
Lesson 7 Ordered Pairs 28 5.G. 2
Lesson 8 Plane Figures 32 5.G. 3
Lesson 9 Triangles. 36 5.G.3, 5.G. 4
Lesson 10 Quadrilaterals 40 5.G.3, 5.G. 4
Glossary 44
Math Tools 47

I Convert Customary Units

Key Words

capacity customary units length weight

Customary units are standard units of measurement used in the United States.

- Length is measured in units such as inches, feet, yards, and miles.
- Weight is measured in units such as ounces, pounds, and tons.
- Capacity is measured in units such as fluid ounces, quarts, and gallons.

To change larger units to smaller units, multiply.
To change smaller units to larger units, divide.

Example

How many inches are in 8 feet 6 inches?
Think: $1 \mathrm{ft}=12 \mathrm{in}$.
$8 \mathrm{ft} 6 \mathrm{in} .=\square \mathrm{in}$.
To change feet to inches, multiply.

number of feet	\timesnumber of inches in 1 foot	$=$number of inches
\downarrow		\downarrow
8	\times	12

To get the total number of inches, add the 6 inches.

$$
96+6=102
$$

8 feet 6 inches $=102$ inches

APPLY

How would you find how many ounces are in 3 pounds 2 ounces? ($1 \mathrm{lb}=16 \mathrm{oz}$)

Guided Practice

1 To make costumes for the school play, Mrs. Ruiz needs 28 feet of fabric. How many yards of fabric should she buy? Hint: $1 \mathrm{yd}=3 \mathrm{ft}$

Step 1 Decide if you should multiply or divide.
To change smaller units to larger units,
\qquad .

Step 2 Write the division sentence. Then divide.

THINK

A foot is smaller than a yard. I am changing smaller units to larger units.
$28 \div$ \qquad $=$ \qquad R1

Step 3 Decide what the remainder means A remainder of 1 means $\frac{1}{3}$ yard.

Step 4 Add the remainder to the quotient.
\qquad $+\frac{1}{3}=$ \qquad
Mrs. Ruiz should buy \qquad yards of fabric.

2. Liam made 25 quarts of punch for the school picnic. How many cups of punch did he make? Hint: 1 qt $=4 \mathrm{c}$

Step 1 Decide if you should multiply or divide.
To change larger units to smaller units,
\qquad .

THINK

A quart is larger than a cup. I am changing larger units to smaller units.
Step 2 Write the multiplication sentence. Then multiply.
$25 \times$ \qquad $=$ \qquad

Liam made \qquad cups of punch.

Independent Practice

Use the tables on page 47 to answer the questions on pages 6 and 7.

1. How do you change feet to inches?
2. How do you change ounces to pounds?
\qquad
\qquad

Use what you know about customary units to complete each pattern.
3. $1 \mathrm{ft}=12 \mathrm{in}$.
$2 \mathrm{ft}=$ \qquad in.
$3 \mathrm{ft}=$ \qquad in.
$4 \mathrm{ft}=$ \qquad in.
$5 \mathrm{ft}=$ \qquad in.
5. $1 \mathrm{c}=8 \mathrm{oz}$
$2 \mathrm{c}=$ \qquad OZ

$$
3 \mathrm{c}=\ldots \quad \mathrm{oz}
$$

$4 \mathrm{c}=$ \qquad oz
$5 \mathrm{c}=$ \qquad OZ
$6 \mathrm{c}=$ \qquad OZ
4. $16 \mathrm{oz}=1 \mathrm{lb}$
$32 \mathrm{oz}=$ \qquad lb
$48 \mathrm{oz}=$ \qquad lb
$64 \mathrm{oz}=$ \qquad lb
$80 \mathrm{oz}=$ \qquad lb
6. $3 \mathrm{ft}=1 \mathrm{yd}$
$4 \mathrm{ft}=1 \frac{1}{3} \mathrm{yd}$
$5 \mathrm{ft}=$ \qquad yd
$6 \mathrm{ft}=$ \qquad yd
$7 \mathrm{ft}=$ \qquad yd
$8 \mathrm{ft}=$ \qquad yd

Change the unit.
7. $7 \mathrm{ft}=$ \qquad in.
8. $\quad 5 \mathrm{gal}=\ldots \quad \mathrm{qt}$
9. $4,000 \mathrm{lb}=$ \qquad T
10. 36 in. $=$ \qquad ft
11. $2 \mathrm{mi}=$ \qquad ft
12. $20 \mathrm{ft}=$ \qquad yd
13. 72 in. $=$ \qquad yd
14. $14 \mathrm{c}=$ \qquad qt
15. $100 \mathrm{gal}=$ \qquad qt
16. $9,000 \mathrm{lb}=$ \qquad T
17. $130 \mathrm{oz}=$ \qquad lb
18. $3 \mathrm{yd}=$ \qquad in.
19. How many fluid ounces are in $6 \frac{1}{2}$ cups? \qquad
20. How many pounds are in 5 tons? \qquad
21. How many yards are in 31 ft ? \qquad
22. How many gallons are in 50 qt ? \qquad

Solve each problem.

23. Mr. Johnson bought $9 \frac{1}{2}$ gallons of lemonade for the school picnic.

How many quarts is that?
\qquad
24. A truck weighs 4,500 pounds. How many tons is that?
\qquad
25. A recipe calls for 1 cup of juice in each fruit smoothie. How many cups of juice do you need to make 3 quarts?

