

Module
 Number and Operations in Base Ten

Lesson 2 Compare and Order Whole Numbers 8121620242832364044
Math Tools 47

D Read and Write Whole Numbers

Key Words

base-ten numeral expanded form number name place value whole numbers

The ten digits used in our base-ten number system are 0, 1, 2, $3,4,5,6,7,8$, and 9 . Place value is the value of the place of a digit in a numeral. The value of each place is ten times the value of the place to its right. The numbers 1, 2, 3, and so on without end are called whole numbers.
You can represent a whole number in different ways.
base-ten numerals: 54,728
number name: fifty-four thousand, seven hundred twenty-eight expanded form: $50,000+4,000+700+20+8$

Example

What is the number name and expanded form of 37,406 ?
Write the number in a place-value chart.

Hundred Thousands	Ten Thousands	Thousands	,	Hundreds	Tens	Ones
	3	7	,	4	0	6

Read the value of the digits before the comma.
thirty-seven thousand
Read the value of the digits after the comma.
four hundred six
Write the number name.
thirty-seven thousand, four hundred six
Find the value of each digit.
Then write the values as a sum.

$$
30,000+7,000+400+6
$$

The number name for 37,406 is thirty-seven thousand, four hundred six.

CONCLUDE

How do you know where to write the comma when writing a base-ten numeral?

Guided Practice

(What is the value of the digit 4 in 549,062 ?
Step 1 Write the number in a place-value chart.

Hundred Thousands	Ten Thousands	Thousands	,	Hundreds	Tens	Ones
			,			

Step 2 Find the position of the 4 in the number.
The digit 4 is in the \qquad place.

Step 3 Use the digit and its position in the number to write the value of the digit.

THINK

Look at the column in the chart in which you wrote the 4.

The value of the 4 is \qquad .

The value of the digit 4 in 549,062 is \qquad .

2 What is eight hundred six thousand, fifteen in base-ten numerals?

Step 1 Write the number in a place-value chart.

Hundred Thousands	Ten Thousands	Thousands	,	Hundreds	Tens	Ones
			,			

REMEMBER

Write a 0 if there is no digit in a place.

Step 2 Write the number using digits.

Eight hundred six thousand, fifteen in base-ten

THINK

Each group of three digits is separated by a comma. numerals is \qquad .

Independent Practice

1. How is the base-ten form of a number different from the expanded form of the number?
\qquad
\qquad

What place is each digit in?
Do I need to write zeros?

What is the value of each underlined digit?

2. $\underline{6}, 987$ \qquad 3. $75,0 \underline{3} 8$ \qquad
3. 32,419 \qquad 5. 381,005 \qquad
4. Write $300,000+50,000+2,000+900+40$ using base-ten numerals.
\qquad
5. Write seventy-one thousand, thirty using base ten-numerals.
\qquad
6. Write 7,081 in expanded form.
\qquad
7. Write the number name for 100,050 .
\qquad
8. Last year, 427,230 people visited the zoo. Write 427,230 in expanded form.

Use place value to continue each pattern.
11. 210

220
230
12. 42,518

43,518
44,518
13. 174,326 174,426

174,526
\qquad
\qquad
\qquad
13. 174,326 174,426 174,526 \qquad
\qquad
14. $308,248318,248 \quad 328,248$ \qquad
\qquad
15. Write the number name for the number that is 1,000 more than 27,491 .

Solve each problem.

16. The diameter of Mercury is three thousand, thirty-two miles.

Write the diameter of Mercury using base-ten numerals.
\qquad
17. The diameter of Neptune is 30,603 miles.

Write the number name for the diameter of Neptune.
\qquad
18. The diameter of Jupiter is 88,732 miles.

Which 8 in 88,732 has the greater value? Explain.
\qquad
\qquad

Module 2 Number and Operations-Fractions

Lesson 1 Equivalent Fractions. 4
Common Core State Standards
Lesson 2 Mixed Numbers and Improper Fractions 8 4.NF. 1
Lesson 3 Compare Fractions 12
4.NF. 2
Lesson 4 Add Fractions 16
4.NF.3.a, 4.NF.3.b, 4.NF.3.d
Lesson 5 Subtract Fractions. 20
Lesson 6 Add and Subtract Mixed Numbers 24
Lesson 7 Multiply Fractions by Whole Numbers 28
Lesson 8 Decimals. 32
Lesson 9 Relate Decimals to Fractions 36
Lesson 10 Compare Decimals 40
4.NF.3.a, 4.NF.3.d
4.NF.3.b, 4.NF.3.c
4.NF.4.a, 4.NF.4.b, 4.NF.4.c
4.NF. 6
4.NF.5, 4.NF. 64.N. 7
Glossary 44
Math Tools 45

D Equivalent Fractions

Key Words

denominator equivalent fractions fraction numerator

A fraction is a number that names equal parts of a whole or equal parts of a group. The numerator of a fraction is the top number. It tells how many equal parts are represented by the fraction. The denominator is the bottom number. It tells the number of equal parts into which the whole or the group is divided.

Equivalent fractions name the same amount but have different numerators and denominators. To find equivalent fractions, multiply the numerator and the denominator by the same number. When you multiply the numerator and denominator by the same number, you are multiplying the fraction by 1 . For example, $\frac{2}{2}=1$ and $\frac{8}{8}=1$.

Example

Write two fractions that are equivalent to $\frac{2}{3}$.
Multiply the numerator and the denominator by the same number. Use 2.

$$
\begin{aligned}
\frac{2}{3} & =\frac{2 \times 2}{3 \times 2} \\
& =\frac{4}{6}
\end{aligned}
$$

You can use fraction

| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | models to see that $\frac{2}{3}=\frac{4}{6}$.

For $\frac{2}{3}$, 2 out of 3 parts are shaded. That model has fewer parts and the parts are larger.
For $\frac{4}{6}, 4$ out of 6 parts are shaded.
That model has more parts and the parts are smaller.

The models are the same size and the same amount of each model is shaded. This shows that the fractions $\frac{2}{3}$ and $\frac{4}{6}$ are equivalent.

Guided Practice

1) Is $\frac{7}{10}$ equivalent to $\frac{5}{6}$?

Step 1 Use fraction models to represent each fraction.
Be sure the models are aligned to the same whole.

| $\frac{1}{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Step 2 Look at the fraction models.
Do the fractions show the same amount? \qquad

Is $\frac{7}{10}$ equivalent to $\frac{5}{6}$? \qquad

THINK

Is the amount shaded to represent $\frac{5}{6}$ the same as the amount shaded to represent $\frac{7}{10}$?
2. What fraction with a denominator of 8 is equivalent to $\frac{1}{2}$? $\frac{1}{2}=\frac{?}{8}$

Step 1 Find the number that 2 is multiplied by to get 8 . Find the missing factor: $2 \times$ \qquad $=8$

Step 2 Use the factor to find the missing numerator.

$$
\frac{1}{2}=\frac{1 \times \square}{2 \times \square}=\frac{\square}{8}
$$

REMEMBER

To find equivalent fractions, you can multiply the numerator and the denominator by the same number.
$\frac{1}{2}=\frac{\square}{8}$

Independent Practice

1. Why can you multiply the numerator and the denominator of a fraction by the same number to write an equivalent fraction?
\qquad
\qquad
2. If two fractions are equivalent, what must be true about models for the fractions?

How can I use fraction models to help me decide if the fractions are equivalent?

Find a fraction that is equivalent to each fraction.
3. $\frac{1}{3}$
4. $\frac{1}{2}$
5. $\frac{2}{5}$
6. $\frac{1}{4}$
7. $\frac{3}{4}$ \qquad
8. $\frac{3}{5}$

Decide whether the fractions are equivalent. Write yes or no.
9. $\frac{3}{4}$ and $\frac{3}{6}$
10. $\frac{1}{3}$ and $\frac{4}{12}$
11. $\frac{1}{2}$ and $\frac{5}{10}$
12. $\frac{4}{5}$ and $\frac{5}{8}$
13. $\frac{2}{5}$ and $\frac{4}{10}$
14. $\frac{1}{4}$ and $\frac{3}{12}$ \qquad
15. $\frac{3}{5}$ and $\frac{1}{2}$ \qquad 16. $\frac{4}{8}$ and $\frac{8}{12}$
17. A pizza is cut into 8 equal slices. Dennis eats $\frac{1}{4}$ of the pizza, and Enid eats $\frac{2}{8}$ of the pizza. Did they eat the same amount of pizza? Explain.

Complete each equivalent fraction.
18. $\frac{1}{2}=\frac{\square}{6}$
19. $\frac{5}{\square}=\frac{10}{12}$
20. $\frac{3}{4}=\frac{6}{\square}$
21. $\frac{\square}{4}=\frac{3}{12}$
22. $\frac{3}{\square}=\frac{30}{100}$
23. $\frac{2}{6}=\frac{\square}{3}$
24. $\frac{1}{5}=\frac{20}{\square}$
25. $\frac{1}{4}=\frac{\square}{8}$
26. $\frac{1}{\square}=\frac{5}{10}$
27. $\frac{\square}{6}=\frac{2}{3}$
28. $\frac{4}{5}=\frac{\square}{10}$
29. $\frac{6}{\square}=\frac{1}{2}$

Solve each problem.

30. Camille makes a juice blend using $\frac{1}{2}$ cup of orange juice and $\frac{3}{8}$ cup of pineapple juice. Does she use the same amount of orange juice and pineapple juice? Explain.
\qquad
31. Marshall says that $\frac{3}{4}$ and $\frac{3}{8}$ are equivalent fractions. Is he correct? How do you know?
\qquad
32. Wanda and Casey each write a fraction. Wanda's fraction has a denominator of 10. Casey's fraction also has a denominator of 10 . What must be true about the numerators for the fractions to be equivalent fractions?

Module
 3 Operations and Algebraic Thinking

Common Core State Standards

Abstract

Lesson 1 Factors and Multiples$4 \quad$ 4.0А. 4

Lesson 2 Add Whole Numbers8 4.NBT.4, 4.0A. 3
Lesson 3 Subtract Whole Numbers 12Lesson 4 Round Whole Numbers16
4.NBT. 3
Lesson 5 Estimate Sums and Differences 20 4.0A. 3
Lesson 6 Estimate Products and Quotients 24
4.0A. 3
Lesson 7 Patterns 284.0A.5
Glossary 32
Math Tools 33

J Factors and Multiples

Key Words

composite number factor multiple prime number

When you multiply two whole numbers, the numbers you multiply are factors of the product. For example, $4 \times 8=32$, so 4 and 8 are factors of 32.4 and 8 are a factor pair of 32 . A factor of a number divides evenly into the number, which means there is no remainder.

The product of two whole numbers is a multiple of each of the numbers that were multiplied. So 32 is a multiple of 4 and a multiple of 8 .
A prime number has exactly two factors: 1 and itself. A composite number has more than two factors. The number 1 is neither prime nor composite since it has exactly one factor, itself.

Example

What are the factors of 36 ? What are the factor pairs of 36 ?
Find all the multiplication sentences for 36 .
Try 2. Think: $2 \times 18=36.2$ and 18 are a factor pair of 36 .
Try 3. Think: $3 \times 12=36.3$ and 12 are a factor pair of 36 .
Try 4. Think: $4 \times 9=36 . \quad 4$ and 9 are a factor pair of 36 .
Try 5. Think: No number multiplied by 5 equals 36 . 5 is not a factor of 36 .

Try 6. Think: $6 \times 6=36$. 6 is a factor of 36.6 and 6 are a factor pair of 36 .
Try 7 and 8 . Neither number can be multiplied to equal 36.
Try 9.9 is a factor with 4.
When the factor pairs start repeating, you have found all the factors of the number.
List the factors in order from least to

ANALYZE

Why is 36 a multiple of all its factors?

The factors of 36 are $1,2,3,4,6,9,12$, 18 , and 36 . The factor pairs of 36 are 1 and 36,2 and 18,3 and 12, 4 and 9,6 and 6.

Guided Practice

1 Is 72 a multiple of 12 ?

Step 1 Make a list of multiples of 12.
List the multiples of 12 until you reach or pass 72.
$12 \times 1=12$
$12 \times 2=24$

THINK

$12 \times 3=36$
$12 \times 4=48$
$12 \times 5=60$
$12 \times 6=72$

Step 2 Look at the list of multiples.
Is 72 in the list of multiples of 12 ? \qquad

Answer is or is not to complete the sentence.
72 \qquad a multiple of 12 .

2 Is 49 a prime number or a composite number?

Step 1 Find all the factors of 49.

$$
1 \times \ldots=49
$$

$7 \times$ \qquad $=49$

The factors of 49 are 1, \qquad and \qquad .

Step 2 Decide if 49 is prime or composite.
Does 49 have more than 2 factors? \qquad Is 49 prime or composite? \qquad

REMEMBER

A composite number has more than 2 factors.

49 is a \qquad number.

Independent Practice

1. How do you find all the factors of a number?
\qquad
\qquad
2. Explain how to decide if a number is a multiple of another number.
\qquad
\qquad

Find the factors of each number.
3. 12 \qquad
4. 20 \qquad numbers can you multiply to find the product?
5. 24 \qquad
6. 54 \qquad $x \mathrm{ft}^{3}>$

Find the first 5 multiples of each number.
7. 8 \qquad
8. 15 \qquad
9. 20 \qquad
10. Is 58 a multiple of 8 ? Explain.

List the factor pairs of each number.

11. 42 \qquad
12. 65 \qquad
13. 76 \qquad
14. 100 \qquad

Write prime or composite for each number.
\qquad
15. 14
16. 9 \qquad 17. 3 \qquad
18. 23 \qquad 19. 10 \qquad 20. 25 \qquad
21. 2 \qquad 22. 19 \qquad
24. 43 \qquad 25. 39 \qquad 26. 77 \qquad

Solve each problem.

27. Every even number is a multiple of 2 . Why?
28. Camille swims every day in May that is a prime number. How many days does Camille swim in May? What are the dates?
\qquad
29. Nathan has 45 muffins to put into packages.

How can he use the factors of 45 to divide the muffins evenly?
\qquad
\qquad

Module
4 Measurement, Data, and Geometry
Common Core State Standards
Lesson 1 Money 4 4.MD. 2
Lesson 2 Time 8 4.MD.1, 4.MD. 2
Lesson 3 Weight and Mass 12
4.MD.1, 4.MD. 2
Lesson 4 Capacity. 16
4.MD.1, 4.MD. 2
Lesson 5 Length 20
4.MD.1, 4.MD. 2
Lesson 6 Perimeter 24
4.MD. 3
Lesson 7 Area 28
Lesson 8 Angles 32
Lesson 9 Line Plots 36
Lesson 10 Lines and Angles 40
Lesson 11 Two-Dimensional Shapes 44
Lesson 12 Symmetry 48
4.G.1, 4.G. 2
Glossary 52
Math Tools 55

You can add, subtract, multiply, or divide to solve problems involving money. When you compute with money, remember to write the dollar sign and the decimal point in the answer. The decimal point separates the dollars from the cents.

Example

Georgia bought 6 tubes of paint for $\$ 31.50$. Each tube of paint cost the same amount. How much did one tube of paint cost?

Choose the operation.
Each of 6 tubes of paint cost the same amount. The total is $\$ 31.50$.
Divide to find the cost of one tube of paint.
Divide: $\$ 31.50 \div 6$
Write the decimal point above the decimal point in the dividend.
$6 \longdiv { 3 1 . 5 0 }$
Divide as with whole numbers.
5.25
$6 \longdiv { 3 1 . 5 0 }$
-30
15
-12
30
$-\frac{30}{0}$
$\$ 31.50 \div 6=\$ 5.25$
One tube of paint cost $\$ 5.25$.

COMPARE

How is dividing with money amounts similar to dividing with whole numbers? How is it different?

Guided Practice

Quinn bought a skateboard for $\$ 45.95$ and a helmet for $\$ 32.50$, including tax. He paid for the items with four $\$ 20$ bills. How much change should Quinn receive?

Step 1 Find the total cost of the skateboard and the helmet.

Add: \$45.95 + \$32.50
Write the addends vertically, and add as with whole numbers.

$$
\begin{array}{r}
\$ 45.95 \\
+\quad 32.50 \\
\hline \$ \square \square . \square \square
\end{array}
$$

Step 2 Find how much money Quinn used to pay for the items.

Multiply: $4 \times \$ 20.00$
Write the factors vertically, and multiply as with whole numbers.
$\$ 20.00$

$\times \quad 4$
$\$ 80.00$

Step 3 Subtract the total cost from the amount Quinn used to pay for the items.

Subtract: \$80.00 - \$78.45
Write the problem vertically, and subtract as with whole numbers.

REMEMBER
Regroup as needed.
\qquad in change.

Independent Practice

1. Explain how to add, subtract, multiply, and divide with money amounts.
\qquad
\qquad
2. Why is it necessary to include the decimal point in money amounts that represent dollars and cents?
\qquad
\qquad

Add, subtract, multiply, or divide to find each answer.
3. $\begin{array}{r}\$ 64.50 \\ +\quad 1295 \\ \hline\end{array}$
4.
$\begin{array}{r}\$ 17.28 \\ -\quad 9.34 \\ \hline\end{array}$
5. $\$ 5.72$

$\times \quad 6$

What operation do I need to use to solve the problem?
6. $\$ 17.44 \div 8=$ \qquad
7. $\$ 74.67-\$ 12.99=$ \qquad
8. $\$ 5.34 \div 6=$ \qquad
9. Jasmine bought 8 pairs of socks. Each pair cost $\$ 3.45$. How much did the socks cost in all?
\qquad
10. Giorgio saved $\$ 8.25$ from his allowance last week. This week, he saved $\$ 6.95$ from his allowance. How much more did Giorgio save last week than this week?

Solve each problem.

11. For lunch, Andrea buys a sandwich for $\$ 3.60$, an orange for $\$ 0.85$, and a granola bar for $\$ 1.39$. How much does Andrea spend on her lunch in all?
12. Chad bought a bag containing 5 tennis balls for $\$ 5.45$. How much did each tennis ball cost?
13. Nora buys 3 pounds of grapes and 2 pounds of apples. The grapes cost $\$ 2.05$ per pound, and the apples cost $\$ 1.14$ per pound. How much do the grapes and apples cost in all?
14. Danny buys a pair of running shoes that are on sale for $\$ 12.99$ off the regular price. He uses a coupon for $\$ 5.00$ off when he pays for the shoes. The regular price of the shoes is $\$ 74.67$. How much does Danny pay for the running shoes?
\qquad
15. The basketball team raised $\$ 64.50$ washing cars. They will use the money to buy new jerseys for the 8 players on the team. The jerseys cost $\$ 19.24$ each. How much more money does the team need to raise to pay for the jerseys?
16. Neil bought 4 pounds of potatoes. He paid with a $\$ 10.00$ bill and received $\$ 4.20$ in change. How much did Neil pay for 1 pound of potatoes?
