Teacher's Manual

 Instruction Coach Mathematics
Dear Educator,

Instruction Coach has been built to meet the new, higher standards for mathematics and contains the rigor that your students will need. We believe you will find it to be an excellent resource for comprehensive instruction, practice, and assessment.

The Triumph Learning Team

[^0]
Contents

Instructional Overview iv
Chapter 1 Ratios and Proportional Relationships 2
Lesson 1 Computing Unit Rate 4
Lesson 2 Identifying Proportional Relationships 6
Lesson 3 Representing Proportional Relationships 8
Lesson 4 Word Problems with Ratio and Percent. 10
Chapter 2 The Number System 12
Lesson 5 Adding and Subtracting Rational Numbers 14
Lesson 6 Applying Properties of Operations to Add and Subtract Rational Numbers 16
Lesson 7 Multiplying Rational Numbers 18
Lesson 8 Dividing Rational Numbers 20
Lesson 9 Converting Rational Numbers to Decimals 22
Lesson 10 Problem Solving: Complex Fractions 24
Lesson 11 Problem Solving: Rational Numbers 26
Chapter 3 Expressions and Equations 28
Lesson 12 Writing Equivalent Expressions 30
Lesson 13 Factoring and Expanding Linear Expressions 32
Lesson 14 Adding and Subtracting Algebraic Expressions 34
Lesson 15 Problem Solving: Algebraic Expressions and Equations 36
Lesson 164 Word Problems with Equations 38
Lesson 17 Word Problems with Inequalities 40
Chapter 4 Geometry 42
Lesson 18 Scale Drawings 44
Lesson 19 Drawing Geometric Shapes 46
Lesson 20 Examining Cross Sections of Three-Dimensional Figures 48
Lesson 21 Area and Circumference of Circles 50
Lesson 22 Angle Pairs. 52
Lesson 23 - Problem Solving: Area and Surface Area of Composite Figures 54
Lesson 24 Problem Solving: Volume of Three-Dimensional Figures 56
Chapter 5 Statistics and Probability 58
Lesson 25 Understanding Sampling 60
Lesson 26 Using Mean and Mean Absolute Deviation 62
Lesson 27 Making Comparative Inferences about Two Populations 64
Lesson 28 Understanding Probability 66
Lesson 29 Probabilities of Simple Events 68
Lesson 30 Probabilities of Compound Events 70
Lesson 31 Simulations 72
Answer Key 74
Math Tools 116
Appendix A: Fluency Practice A
Appendix B: Correlations Charts B

Instructional Overview

> Welcome to Instruction Coach! This program is based on the philosophy that mathematical skills are built on concepts. Math, more than any other school subject, builds from concept to concept, one on top of another, over several years. When students understand concepts and how they connect to skills, they are better equipped to solve the problems that they encounter in the real world.

Implementation

Instruction Coach is your instructional anchor. You probably have other instructional materials in your class-they may be books and workbooks, computers, smart boards, pads, math manipulatives, or a basal textbook. You know when and how to apply the appropriate mix of instruction for your students as the content demands. In the end, these are your students, who are in your class and your school. You know your class best. You have the wisdom and knowledge to use Instruction Coach in the best way possible for your students.

Basal Implementation

Instruction Coach offers complete instruction for your grade. You can use it as your main instructional vehicle throughout the school year. Instruction Coach is a complete package-from instructional lessons to robust lesson practice to chapter reviews and performance tasks.

Supplemental Implementation

If you use a basal textbook, then Instruction Coach becomes an excellent partner in helping to strengthen and advance your mathematics instruction. Instruction Coach and your basal can work together hand in hand; whether for lesson review, lesson practice, chapter review, or working through a performance task, Instruction Coach is ready to help your students.

The flexibility of Instruction Coach allows it to fit into many stages of instruction. For example, you may want to use Instruction Coach on a twice-weekly basis to add depth, understanding, and practice to the basal experience. Alternatively, you may choose to use Instruction Coach at the end of a chapter of instruction if you judge that your students need additional practice in that concept and skill. You can then choose several or all lessons from the chapter to reinforce and review concepts and skills included in that chapter. Or, you may want to assign specific lessons from Instruction Coach to groups of students or to individuals.

Progressions

The content covered in this program is organized by chapter. The content across grades 3-5 connects back to math taught earlier in kindergarten and grades 1 and 2. For grades 6-8, although most of the names change, the connections back to earlier grades are strong and dependent. Instruction Coach helps you make critical connections between topics within a single grade level and across grade levels.

Progressions in the Student Edition give students a clear visual roadmap of how new content builds upon content from previous grade levels and connects to future content.

Lesson Progressions in the Teacher's Manual help you focus on key connections. Each Chapter opens with a Lesson Progression Map that offers a visual progression of lesson content across grades, including both pre- and postrequisite lessons for each chapter. Focusing instruction on these connections will help strengthen the continuum of mathematical concepts and skills.

Lessons

The lessons flow in a logical fashion, building on prior knowledge from the forerunner chapter or from a chapter whose content links to the chapter at hand. Lessons will often take several days to complete. Use the featuresDISCUSS, TRY, CHECK, and MODEL-in the lessons to stimulate discussions, to allow groups of students to interact and answer questions, and to connect with other parts of the math curriculum. The lesson practice allows many options, from work in class to homework.

There are three types of lessons in this program:
 \longrightarrow

READ to understand the problem and what is being asked.

Make a PLAN. Identify the steps necessary to solve the problem.

Carry out the steps to SOLVE the problem.

CHECK that the answer is correct.

Additional Features

The Instruction Coach Student Edition also includes a glossary and a selection of content-specific math tools.

When students encounter a highlighted term in their book, they will find this term defined in the glossary. When math tools are necessary for a given lesson, you will find this reference in the Materials section of your lesson plan-occasionally, these tools are referenced in the lesson itself.

Assessments

A combination of great teaching, strong instructional content, and computer activities provides an excellent environment in which your students can achieve success. The assessments that accompany Instruction Coach will provide you with data to determine the depth of student understanding. Items on these assessments have been specifically crafted to assess content and skills. Given this information, you can decide how to use Instruction Coach with any number of additional resources to teach all your students in the best possible way.

The Instruction Coach Assessments include six comprehensive assessments. Additionally, each item in these assessments has been designed at a specific Webb's Depth of Knowledge Level. The items always range from level 1 through level 3. These assessments are available in a separate booklet and in a digital format. Two types of assessments are included in the program:

Chapter Assessments

There are five Chapter Assessments, one for each chapter. Each assessment consists of 20, 25, or 30 items. Students are given the opportunity to demonstrate mathematical proficiency in five open-ended items included at the end of each assessment. Rubrics and sample student work that assist in evaluating student work are also provided in a separate answer key.

Summative Assessment

At the end of the course, you can administer the summative assessment, designed to assess students' understanding of the mathematical concepts at their grade level. It includes 50 multiple-choice items that range in difficulty.

Teacher's Manual

Lesson Plans

Two pages with guidance are provided for each student lesson.

Clear Learning Objectives for every lesson

Math Vocabulary with definitions

Pre-lesson activities
introduce new concepts and skills or focus on prerequisite skills

Full support in working through instruction

Understanding Factors and Multiples

Learning Objectives

- Students will understand how to find all factor pairs of a given number.
- Students will list multiples of a given number and determine if a given number is prime or composite.

Vocabulary	
array	an arrangement of objects in equal rows and columns
composite number	a whole number that has more than one factor pactor
a number that is multiplied to get a product	
multiple	the product of a number and another number
prime	a whole number that has exactly one factor pair,
number	1 and itself

Materials

- Math Tool: Multiplication Table
- Fluency Practice, page A2

Before the Lesson

Distribute copies of Math Tool: Multiplication Table or have the students use the Multiplication Table on
page 241 in their books. Discuss the relationship between factor pairs and basic multiplication facts. Ask: What are all of the multiplication facts that have a product of 18 ?
4 You might want to use Fluency Practice page A2 to help students review multiplication facts.

Understand - Connect

This page introduces the term factor. Visual representations of factor pairs can provide insight for students when finding all of the factor pairs of a given number. Area models are particularly useful because they show the shape for each factor pair. To help develop conceptual understanding, begin by noting that the first area model is in the shape of a rectangle with 1 row, and that there are 24 squares in that row. Then note that the second model is also in the shape of a rectangle, but has 2 rows with 12 squares in each row. Emphasize that this rectangle also has a total of 24 squares but it is shorter than the rectangle with 1 row because the 24 squares are broken equally into 2 rows. Point out that the third area model shows
a rectangle made of 3 rows with 8 squares in each row, and that this rectangle is shorter and wider than the first two rectangles. When discussing the last area model, explain that this rectangle is the shortest and widest because the 24 squares are divided equally into 4 rows, so there are fewer squares in each row. Emphasize that each model shows 24 squares, but they are arranged differently each time.
To connect the concept to the procedural understanding, explain the steps for finding all of the factor pairs of a given number by using a multiplication table. Explain that this is another way to find factor pairs without the use of models. Emphasize that students can list all the basic
multiplication facts with a product of 24 to help them find the factor pairs. Point out that the multiplication table only shows factors up to 12 so that they cannot find the factor pair of 1×24 on the table.
DISCUSS Discuss with students how to use a multiplication table to find the factor pairs of 12 Encourage students to use the terms factor and
product in their explanations. Ask: How can you use a visual representation to help you determine if there are other factor pairs of 12 besides those you found using the multiplication table?
Answers may vary. Possible answer: Find all the 12s in the table. Use the table to write the factor pairs: 1 and 12,2 and 6,3 and 4 . The factors of 12 are 1,2 , $3,4,6$, and 12 .

Examples

EXAMPLEA This example introduces the term multiple. Emphasize that to determine the multiples of 5 , students can use basic multiplication facts that have 5 as one factor and the whole numbers in order ($1,2,3,4$, and so on) as the second factor DISCUSS Discuss with students how to determine if one number is a multiple of another. Ask: How can you use a multiplication table to help you determine whether 30 is a multiple of 5 ?
Yes; 30 is a multiple of 5 since $5 \times 6=30$.
EXAMPLEB This example shows a given number (42) that is not a multiple of another given number (8). Ask: How can you use division to determine if 42 is a multiple of 8 ?

EXAMPLEC This example shows a given number (45) that is a multiple of another given number (9). Ask: How do you know that 45 is a multiple of 9 ? TRY Discuss with students the process they can use to determine if 33 is a multiple of 4 .
No. The multiples of 4 are: $4,8,12,16,20,24,28$,
32,36 , and so on. 33 is not a multiple of 4 .
EXAMPLED This example intro aces the terms array, prime number, and con oosite number. Point out that an array is diffe ent from an area model in that an array is mad of a set of objects

Common Errors section

anticipates likely student errors and suggests ways to help. ber
s only s only

MODEL Explain that the number of models that students can draw for the factor pairs of a given number determines whether the number is prime or composite. If just one model can be drawn, then the number must be a prime number.
Students draw a 1 by 7 array. 7 is a prime number.

The Sieve of Eratosthenes

Have students complete the chart. Stress that students should cross off the multiples in order and work through to the end of the hundreds chart for each multiple. You may wish to provide calculators for this activity.
For answers, see page 81.

Practice

As students are working, pay special attention to problems 14 and 15 , which provide an opportunity for students to apply their understanding of factors to a real-world situation.
For answers, see page 81.

Common Errors

When writing the factors for a number, students may forget to include 1. Remind them that the first two factors they should list for any number are the number itself and 1 , and that all of the other factors will be between these two numbers.
Students may identify a composite number as a prime number. When students make this error, attempt to correct the misconception by demonstrating how to check a number in a systematic way. Ask: Is there an expression that has 2 as a factor and this number as a product? Is there an expression that has 3 as a factor and this number as a product? and so on.

Answers to Interactive
Questions

2 Identifying Proportional Relationships

Learning Objectives

- Students will show that ratios are equivalent and are therefore proportional and will identify the constant of proportionality for quantities in a proportional relationship.
- Students will represent ratios as points on a coordinate grid to show that the ratios are equivalent and will demonstrate that an equation represents a directly proportional relationship.

Vocabulary

constant of proportionality the constant ratio by which two quantities co-vary in a proportion; also called the unit rate or constant ratio
origin the point named by $(0,0)$ on a coordinate grid, where the axes intersect
proportion an equation that shows that two ratios are equivalent

Before the Lesson

Review the fact that a ratio compares two quantities. Pose this problem: You are in a bike shop looking at bicycles. The number of tires you see in the showroom depends on the number of bicycles in the showroom. How many tires does 1 bicycle have? Draw a table on the board, labeling one row Bicycles and the second row Tires. In the bicycles row, write 2, 3, 4, and 5 . Then ask: What is the total number of tires if there are 2 bicycles? 3 bicycles? 4? 5? Fill in the table as shown.

Bicycles	1	2	3	4	5
Tires	2	4	6	8	10

Explain that each column of the table shows a ratio that compares the total number of bicycles to the total number of tires. Ask: If more bicycles are added to the showroom, will the number of tires in the showroom also increase? Use this to help students understand that when ratios are in a proportional relationship, as one quantity increases, the other quantity will also increase. In the case of the above example, as the number of bicycles increases by 1 , the number of tires increases by 2 . Explain that students can show that quantities in a table show a proportional relationship. Segue into the lesson.

Understand $-\approx$ Connect

Tables can be used to help students recognize proportional relationships. To help develop conceptual understanding, show that the pairs of values in each column of the table showing Tina's Earnings can be written as a ratio. Use step 1 to show that all of these ratios simplify to $\frac{1}{12}$, so they
are all equivalent ratios. Explain that since the ratios are equivalent, the table shows a directly proportional relationship.
Explain that Tina's hourly wage shows the number of dollars she earns if she works 1 hour and that this is also the constant of proportionality. Explain that the constant of proportionality is the
amount by which each x-value must be multiplied to get each y-value. So, if Tina works for 1 hour, she earns 1×12, or 12 , dollars. If she works for 2 hours, she earns 2×12, or 24 , dollars. The amount by which each x-value is multiplied is always the same, 12. Ask: Does it make sense that the constant is 12 given that this is an hourly wage? Have students discuss the fact that the amount Tina earned can be found by multiplying $\$ 12$ by the number of hours she works. So, it makes sense that the constant of proportionality is also her hourly wage.
To extend students' understanding of the concept that values in a table can represent a directly proportional relationship, show that the pairs of values in the table on page 10 can be plotted as points. Use steps 1 and 2 to illustrate that the points can be connected to form a straight line that passes through the origin, and that this means they show a directly proportional relationship.
Connect students' understanding of the constant of proportionality to this graph. On page 10, students recognize that the constant of proportionality showed Tina's hourly wage, $\$ 12$ per hour. Explain that her hourly wage is a unit rate, because it is the ratio $\frac{\$ 12}{7 \mathrm{~h}}$. Connect this to the graph by showing that the point $(1,12)$ shows that the constant of proportionality is 12 . Remind students that if a graph shows a directly proportional relationship, the point $(1, k)$ shows k, the constant of proportionality. TRY Use this to illustrate that directly proportional relationships can be represented as equations, as well as in tables and graphs.
Answers may vary. Possible answer:
Each pair of values makes the equation true.
$(1,12): 12=12(1)$ is true.
$(2,24): 24=12(2)$ is true.
$(3,36): 36=12(3)$ is true.
$(4,48): 48=12(4)$ is true.
$(5,60): 60=12(5)$ is true.
$(6,72): 72=12(6)$ is true.
The equation $y=12 x$ is in the form $y=k x$, so it represents a directly proportional relationship.
Since $k=12$, the constant of proportionality is 12 .

Practice

As students are working, pay special attention to problems 2,5, and 6, which provide an opportunity for students to recognize that not all tables, graphs, and equations show proportional relationships. It is critical that students understand why these representations do not show proportional relationships.
Also pay careful attention to questions 9-12, since these are the first times students are asked to determine if verbal statements or mapping diagrams show proportional relationships. Again, be sure that students understand why problems 10 and 11 do not show proportional relationships. For answers, see pages 74 and 75 .

Common Errors

Some students may mistakenly think that the constant of proportionality, k, must be a whole number. If so, they may think that the equation in problem $8, y=\frac{1}{5} k$, does not show a proportional relationship. Be sure to point out that k does not need to be a whole number. For example, if a child earned $\$ 0.20$ for each cookie she sold, then one could multiply the number of cookies sold by $\$ 0.20$ to find the total earned. Since $0.20=\frac{1}{5}$, this could be represented as $y=0.2 x$ or $y=\frac{1}{5} x$. You could also generate points for that situation and graph them to show that they form a straight line.

[^0]: Instruction Coach, Mathematics, First Edition, Grade 7, Teacher's Manual 527NATE ISBN-13: 978-1-62928-401-9 Cover Image: © Thinkstock

 Triumph Learning ${ }^{\circledR} 136$ Madison Avenue, 7th Floor, New York, NY 10016 © 2013 Triumph Learning, LLC. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission from the publisher.

